Skip to main content
Log in

The RNA Virome and Its Dynamics in an Invasive Fruit Fly, Bactrocera dorsalis, Imply Interactions Between Host and Viruses

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important invasive agricultural insect pest with a wide host range, and has spread around the world over the last century. This evolutionary trait may have arisen primarily from interactions between B. dorsalis and other invertebrates that share the same ecological niches. The invasive behavior of B. dorsalis also frequently exposes them to diverse species of viruses. Thereby, RNA viromes may be useful microbial markers to understand the ecological evolution of B. dorsalis as well as to investigate virus–host interactions. Here, we reported eight novel RNA viruses in B. dorsalis of a lab colony, including four positive-strand RNA viruses, two negative-strand RNA viruses, and two double-stranded RNA viruses using high-throughput sequencing technology. Analysis of the virus-derived small RNAs suggested that most of these viruses may be active and trigger the host antiviral RNAi responses. The viruses were also detected in various geographical populations of B. dorsalis, implying that there is a strong association between the viromes and host. In addition, these viruses infected specific fly tissues, predominately the central nervous system and gut. Furthermore, we explored the dynamics of the viruses when hosts were exposed to short- or long-term stressors, which showed that titers of some viruses were responsively altered in the stressed B. dorsalis. The discovery of these viruses may enrich our understanding of the species diversity of RNA viruses and also provide information on viruses in association with host adaptation in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150. https://doi.org/10.1016/j.cell.2014.02.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Novella IS, Presloid JB, Taylor RT (2014) RNA replication errors and the evolution of virus pathogenicity and virulence. Curr Opin Virol 9:143–147. https://doi.org/10.1016/j.coviro.2014.09.017

    Article  PubMed  CAS  Google Scholar 

  3. Zhang YZ, Shi M, Holmes EC (2018) Using metagenomics to characterize an expanding virosphere. Cell 172:1168–1172. https://doi.org/10.1016/j.cell.2018.02.043

    Article  PubMed  CAS  Google Scholar 

  4. Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L, Holmes EC, Zhang YZ (2018) The evolutionary history of vertebrate RNA viruses. Nature 556:197–202. https://doi.org/10.1038/s41586-018-0012-7

    Article  PubMed  CAS  Google Scholar 

  5. Medd NC, Fellous S, Waldron FM, Xuéreb A, Nakai M, Cross JV, Obbard DJ (2018) The virome of Drosophila suzukii, an invasive pest of soft fruit. Virus Evol 4. https://doi.org/10.1093/ve/vey009

  6. Nouri S, Salem N, Nigg JC, Falk BW (2015) Diverse array of new viral sequences identified in worldwide populations of the Asian Citrus Psyllid (Diaphorina citri) using viral metagenomics. J Virol 90:2434–2445. https://doi.org/10.1128/JVI.02793-15

    Article  PubMed  CAS  Google Scholar 

  7. Nouri S, Matsumura EE, Kuo YW, Falk BW (2018) Insect-specific viruses: from discovery to potential translational applications. Curr Opin Virol 33:33–41. https://doi.org/10.1016/j.coviro.2018.07.006

    Article  PubMed  Google Scholar 

  8. Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol 50:293–319. https://doi.org/10.1146/annurev.ento.50.071803.130428

    Article  PubMed  CAS  Google Scholar 

  9. Stephens AEA, Kriticos DJ, Leriche A (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull Entomol Res 97:369–378. https://doi.org/10.1017/S0007485307005044

    Article  PubMed  CAS  Google Scholar 

  10. Zeng Y, Reddy GVP, Li Z, Qin Y, Wang Y, Pan X, Jiang F, Gao F, Zhao Z (2019) Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). J Appl Entomol 143:165–176. https://doi.org/10.1111/jen.12582

    Article  Google Scholar 

  11. Niu J, Taning CNT, Christiaens O, Smagghe G, Wang JJ (2018) Rethink RNAi in insect Pest control: challenges and perspectives. Adv Insect Physiol 55:1–17. https://doi.org/10.1016/bs.aiip.2018.07.003

    Article  Google Scholar 

  12. Jing TX, Zhang YX, Dou W, Jiang XY, Wang JJ (2019) First insights into intrapuparial development of Bactrocera dorsalis (Hendel): application in predicting emergence time for tephritid fly control. Insects 10. https://doi.org/10.3390/insects10090283

  13. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Watson M, Schnettler E, Kohl A (2013) viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29:1902–1903. https://doi.org/10.1093/bioinformatics/btt297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu S, Vijayendran D, Chen Y, Bonning BC (2016) Aphis Glycines Virus 2, a novel insect virus with a unique genome structure. Viruses 8. https://doi.org/10.3390/v8110315

  17. Wang LL, Feng ZJ, Li T, Lu XP, Zhao JJ, Niu JZ, Smagghe G, Wang JJ (2016) Inheritance, realized heritability, and biochemical mechanisms of Malathion resistance in Bactrocera dorsalis (Diptera: Tephritidae). J Econ Entomol 109:299–306. https://doi.org/10.1093/jee/tov276

    Article  PubMed  CAS  Google Scholar 

  18. Shen GM, Jiang HB, Wang XN, Wang JJ (2010) Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Mol Biol 11:76. https://doi.org/10.1186/1471-2199-11-76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Niu J, Smagghe G, De Coninck DI, Van Nieuwerburgh F, Deforce D, Meeus I (2016) In vivo study of Dicer-2-mediated immune response of the small interfering RNA pathway upon systemic infections of virulent and avirulent viruses in Bombus terrestris. Insect Biochem Mol 70:127–137. https://doi.org/10.1016/j.ibmb.2015.12.006

    Article  CAS  Google Scholar 

  21. Aguiar ER, Olmo RP, Paro S, Ferreira FV, de Faria IJ, Todjro YM, Lobo FP, Kroon EG, Meignin C, Gatherer D, Imler JL, Marques JT (2015) Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 43:6191–6206. https://doi.org/10.1093/nar/gkv587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, Brouqui JM, Bayne EH, Longdon B, Buck AH, Lazzaro BP, Akorli J, Haddrill PR, Obbard DJ (2015) The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol 13:e1002210. https://doi.org/10.1371/journal.pbio.1002210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu S, Vijayendran D, Bonning BC (2011) Next generation sequencing technologies for insect virus discovery. Viruses 3:1849–1869. https://doi.org/10.3390/v3101849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Webster CL, Longdon B, Lewis SH, Obbard DJ (2016) Twenty-five new viruses associated with the Drosophilidae (Diptera). Evol Bioinformatics Online 12:13–25. https://doi.org/10.4137/EBO.S39454

    Article  CAS  Google Scholar 

  25. Wang F, Fang Q, Wang B, Yan Z, Hong J, Bao Y, Kuhn JH, Werren JH, Song Q, Ye G (2017) A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathog 13:e1006201. https://doi.org/10.1371/journal.ppat.1006201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dheilly NM, Maure F, Ravallec M, Galinier R, Doyon J, Duval D, Leger L, Volkoff A-N, Misse D, Nidelet S Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc R Soc B Biol Sci 282:20142773

  27. Williamson C, Rybicki EP, Kasdorf GGF, Von Wechmar MB (1988) Characterization of a new Picorna-like virus isolated from aphids. J Gen Virol 69:787–795. https://doi.org/10.1099/0022-1317-69-4-787

    Article  CAS  Google Scholar 

  28. Gupta V, Stewart CO, Rund SSC, Monteith K, Vale PF (2017) Costs and benefits of sublethal Drosophila C virus infection. J Evol Biol 30:1325–1335. https://doi.org/10.1111/jeb.13096

    Article  PubMed  CAS  Google Scholar 

  29. Govan VA, Leat N, Allsopp M, Davison S (2000) Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology 277:457–463. https://doi.org/10.1006/viro.2000.0616

    Article  PubMed  CAS  Google Scholar 

  30. Habayeb MS, Ekengren SK, Hultmark D (2006) Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. J Gen Virol 87:3045–3051. https://doi.org/10.1099/vir.0.81997-0

    Article  PubMed  CAS  Google Scholar 

  31. Habayeb MS, Cantera R, Casanova G, Ekstrom JO, Albright S, Hultmark D (2009) The Drosophila Nora virus is an enteric virus, transmitted via feces. J Invertebr Pathol 101:29–33. https://doi.org/10.1016/j.jip.2009.02.003

    Article  PubMed  Google Scholar 

  32. Fujita R, Kuwata R, Kobayashi D, Bertuso AG, Isawa H, Sawabe K (2017) Bustos virus, a new member of the negevirus group isolated from a Mansonia mosquito in the Philippines. Arch Virol 162:79–88. https://doi.org/10.1007/s00705-016-3068-4

    Article  PubMed  CAS  Google Scholar 

  33. Auguste AJ, Carrington CV, Forrester NL, Popov VL, Guzman H, Widen SG, Wood TG, Weaver SC, Tesh RB (2014) Characterization of a novel Negevirus and a novel Bunyavirus isolated from Culex (Culex) declarator mosquitoes in Trinidad. J Gen Virol 95:481–485. https://doi.org/10.1099/vir.0.058412-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kawakami K, Kurnia YW, Fujita R, Ito T, Isawa H, Asano SI, Binh ND, Bando H (2016) Characterization of a novel negevirus isolated from Aedes larvae collected in a subarctic region of Japan. Arch Virol 161:801–809. https://doi.org/10.1007/s00705-015-2711-9

    Article  PubMed  CAS  Google Scholar 

  35. Robinson CM, Pfeiffer JK (2014) Viruses and the microbiota. Annu Rev Virol 1:55–69. https://doi.org/10.1146/annurev-virology-031413-085550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ben Longdon LW, Francis M. Jiggins (2012) The sigma viruses of Drosophila. In: Ralf G, Dietzgen IVK (eds) Rhabdoviruses: molecular Taxonomy, Evolution, Genomics, Ecology, Cytopathology and Control. Caister Academic Press, Norfolk, p 117–132

  37. Longdon B, Day JP, Schulz N, Leftwich PT, de Jong MA, Breuker CJ, Gibbs M, Obbard DJ, Wilfert L, Smith SCL, McGonigle JE, Houslay TM, Wright LI, Livraghi L, Evans LC, Friend LA, Chapman T, Vontas J, Kambouraki N, Jiggins FM (2017) Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. Proc Biol Sci 284:ARTN 2016238. https://doi.org/10.1098/rspb.2016.2381

    Article  Google Scholar 

  38. Donaire L, Ayllón MA (2017) Deep sequencing of mycovirus-derived small RNAs from Botrytis species. Mol Plant Pathol 18:1127–1137

    Article  CAS  Google Scholar 

  39. Himeno M, Maejima K, Komatsu K, Ozeki J, Hashimoto M, Kagiwada S, Yamaji Y, Namba S Significantly low level of small RNA accumulation derived from an encapsidated mycovirus with dsRNA. Genome 396:69–75

Download references

Funding

The authors acknowledge the support of the National Natural Science Foundation of China (31701846) and the earmarked fund for Modern Agro-industry (Citrus) Technology Research System of China (CARS-26).

Author information

Authors and Affiliations

Authors

Contributions

WZ, JN, and JW designed the study. The experiments are performed by WZ and QG. WZ wrote the initial draft. JN and JW edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin-Jun Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(DOCX 6611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Gu, Q., Niu, J. et al. The RNA Virome and Its Dynamics in an Invasive Fruit Fly, Bactrocera dorsalis, Imply Interactions Between Host and Viruses. Microb Ecol 80, 423–434 (2020). https://doi.org/10.1007/s00248-020-01506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01506-9

Keywords

Navigation