Skip to main content

Advertisement

Log in

The Novel Potential Therapeutic Utility of Montelukast in Alleviating Autistic Behavior Induced by Early Postnatal Administration of Thimerosal in Mice

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Background and Aim

Thimerosal (THIM) is a mercury-containing preservative widely used in many biological and medical products including many vaccines. It has been accused of being a possible etiological factor for some neurodevelopmental disorders such as autistic spectrum disorders (ASDs). In our study, the potential therapeutic effect of montelukast, a leukotriene receptor antagonist used to treat seasonal allergies and asthma, on THIM mice model (ASDs model) was examined.

Methodology

Newborn mice were randomly distributed into three groups: (Group 1) Control (Cont.) group received saline injections. (Group 2) THIM-treated (THIM) group received THIM intramuscular (IM) at a dose of 3000 μg Hg/kg on postnatal days 7, 9, 11, and 15. (Group 3) Montelukast-treated (Monte) group received THIM followed by montelukast sodium (10 mg/kg/day) intraperitoneal (IP) for 3 weeks. Mice were evaluated for growth development, social interactions, anxiety, locomotor activity, and cognitive function. Brain histopathology, alpha 7 nicotinic acetylcholine receptors (α7nAChRs), nuclear factor kappa B p65 (NF-κB p65), apoptotic factor (Bax), and brain injury markers were evaluated as well.

Results

THIIM significantly impaired social activity and growth development. Montelukast mitigated THIM-induced social deficit probably through α7nAChRs upregulation, NF-κB p65, Bax, and brain injury markers downregulation, thus suppressing THIM-induced neuronal toxicity and inflammation.

Conclusion

Neonatal exposure to THIM can induce growth retardation and abnormal social interactions similar to those observed in ASDs. Some of these abnormalities could be ameliorated by montelukast via upregulation of α7nAChRs that inhibited NF-κB activation and significant suppression of neuronal injury and the associated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM (2009) The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol 2009:1–7

    Google Scholar 

  • Adamson P, Auty DJ, Ayres DS, Backhouse C, Barr G, Betancourt M et al (2011) Improved search for muon-neutrino to electron-neutrino oscillations in MINOS. Phys Rev Lett 107(18):1–6

    Google Scholar 

  • Al-ayadhi LY, Mostafa GA (2012) A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. J Neuroinflamm 9:1–8

    Google Scholar 

  • Alexiou A, Soursou G, Yarla NS, Ashraf G, M. (2018) Proteins commonly linked to autism spectrum disorder and Alzheimer’s disease. Curr Protein Pept Sci. 19(9):876–880

    CAS  PubMed  Google Scholar 

  • Andrews N, Miller E, Grant A, Stowe J, Osborne V, Taylor B (2015) Thimerosal exposure in infants and developmental disorders: a retrospective cohort study in the United Kingdom does not support a causal association. Pediatrics 114(3):584–591

    Google Scholar 

  • Aragão WAB, Teixeira FB, Fagundes NCF, Fernandes RM, Fernandes LMP, da Silva MCF, Amado LL, Sagica FES, Oliveira EHC, Crespo-López ME, Maia CSF, Lima RR (2018) Hippocampal dysfunction provoked by mercury chloride exposure : evaluation of cognitive impairment, oxidative stress, tissue injury and nature of cell death. Oxid Med Cell Longev 2018(7):1–11

    Google Scholar 

  • Araghi-niknam M, Fatemi SH (2003) Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol 23(6):945–952

    CAS  PubMed  Google Scholar 

  • Ball LK, Ball R, Pratt RD (2001) An assessment of thimerosal use in childhood vaccines. Pediatrics 107(5):1147–1154

    CAS  PubMed  Google Scholar 

  • Bancroft JD (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Edinburgh, p 150

    Google Scholar 

  • Barger BD, Campbell JM, Mcdonough JD (2013) Prevalence and onset of regression within autism spectrum disorders: a meta-analytic review. J Autism Dev Disord 43(4):817–828

    PubMed  Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev of Pharmacol 49:57–71

    CAS  Google Scholar 

  • Berko ER, Suzuki M, Beren F, Lemetre C, Alaimo CM, Calder RB et al (2014) Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet 10(5):1–11

    Google Scholar 

  • Berman RF, Pessah IN, Mouton PR, Mav D, Harry J (2008) Low-level neonatal thimerosal exposure: further evaluation of altered neurotoxic potential in SJL mice. Toxicol Sci 101(2):294–309

    CAS  PubMed  Google Scholar 

  • Bescoby-chambers N, Forster P, Bates G, Clinic G, Child C, Psychiatrist A (2001) Foetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43(3):202–206

    Google Scholar 

  • Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 29(4):263–271

    Google Scholar 

  • Buitelaar JK, Willemsen-swinkels SHN (2000) Autism: current theories regarding its pathogenesis and implications for rational pharmacotherapy. Paediatr Drugs 2(1):67–81

    CAS  PubMed  Google Scholar 

  • Burbacher TM, Grant KS, Mayfield DB, Gilbert SG, Rice DC (2005) Prenatal methylmercury exposure affects spatial vision in adult monkeys. Toxicol Appl Pharmacol 208(1):21–28

    CAS  PubMed  Google Scholar 

  • Çevik B, Solmaz V, Aksoy D, Erbas O (2015) Montelukast inhibits pentylenetetrazol-induced seizures in rats. Med Sci Monit 21:869–874

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang J, Zhang J, Li S, He L, Shao D, Du H (2013) Effect of thimerosal on the neurodevelopment of premature rats. World J Pediatr 9(4):356–360

    PubMed  Google Scholar 

  • Chiurchiù V, MacCarrone M (2011) Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(9):2605–2641

    PubMed  Google Scholar 

  • Christensen DL, Baio J, Braun KVN, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee L, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 65(3):1–23

    PubMed  PubMed Central  Google Scholar 

  • Colombo SF, Mazzo F, Pistillo F, Gotti C (2013) Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 86(8):1063–1073

    CAS  PubMed  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    CAS  PubMed  Google Scholar 

  • Deutsch SI, Burket JA, Benson AD (2014) Targeting the α7 nicotinic acetylcholine receptor to prevent progressive dementia and improve cognition in adults with Down’s syndrome. Prog Neuropsychopharmacol Biol Psychiatry 54:131–140

    CAS  PubMed  Google Scholar 

  • Deutsch SI, Urbano MR, Neumann SA, Burket JA, Katz E (2010) Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions? Clin Neuropharmacol 33(3):114–120

    CAS  PubMed  Google Scholar 

  • Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22(3):229–237

    CAS  PubMed  Google Scholar 

  • Ding Q, Wei EQ, Zhang YJ, Zhang WP, Chen Z (2006) Cysteinyl leukotriene receptor 1 is involved in N-methyl-D-aspartate- mediated neuronal injury in mice. Acta Pharmacol Sin 27(12):1526–1536

    CAS  PubMed  Google Scholar 

  • Dórea JG, Marques RC, Isejima C (2012) Neurodevelopment of Amazonian Infants : Antenatal and Postnatal Exposure to Methyl- and Ethylmercury. J Biomed Biotechnol 2012:1–9

    Google Scholar 

  • Duszczyk-Budhathoki M, Olczak M, Lehner M, Majewska MD (2012) Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex : protective role of dehydroepiandrosterone sulfate. Neurochem Res 37(2):436–447

    CAS  PubMed  Google Scholar 

  • Elsheshtawy E, Tobar S, Sherra K, Atallah S, Elkasaby R (2011) Study of some biomarkers in hair of children with autism. Middle East Curr Psychiatry 18(2):6–10

    Google Scholar 

  • Eriksson Y, Boström M, Sandelius Å, Blennow K, Zetterberg H, Kuhn G, Kalm M (2018) The anti-asthmatic drug, montelukast, modifies the neurogenic potential in the young healthy and irradiated brain. Cell Death Dis 9(7):2–10

    Google Scholar 

  • Erşahin M, Çevik O, Akakın D, Şener A, Özbay L, Yegen BC, Şener G (2012) Montelukast inhibits caspase-3 activity and ameliorates oxidative damage in the spinal cord and urinary bladder of rats with spinal cord injury. Prostaglandins Other Lipid Mediat 99(3–4):131–139

    PubMed  Google Scholar 

  • Falluel-morel A, Sokolowski K, Sisti HM, Zhou X, Shors TJ, Dicicco-bloom E (2007) Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty. J Neurochem 103(5):1968–1981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52(8):805–810

    CAS  PubMed  Google Scholar 

  • Filipek PA (1995) Quantitative magnetic resonance imaging in autism: the cerebellar vermis. Curr Opin Neurol 8:134–138

    CAS  PubMed  Google Scholar 

  • Frye RE (2018) Social skills deficits in autism spectrum disorder: potential biological origins and progress in developing therapeutic agents. CNS Drugs 32(8):713–734

    PubMed  PubMed Central  Google Scholar 

  • Gadad BS, Li W, Yazdani U, Grady S, Johnson T, Hammond J et al (2015) Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology. Proc Natl Acad Sci USA 112(40):12498–12503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gahring LC, Enioutina EY, Myers EJ, Spangrude GJ, Efimova OV, Kelley TW, Tvrdik P, Capecchi MR, Rogers SW (2013) Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage. PLoS ONE 8(3):1–14

    Google Scholar 

  • Gallagher CM, Goodman MS (2010) Hepatitis B Vaccination of male neonates and autism diagnosis, NHIS 1997–2002. J Toxicol Environ Health A 73:1665–1677

    CAS  PubMed  Google Scholar 

  • Gallagher CM, Goodman MS (2016) Hepatitis B triple series vaccine and developmental disability in US children aged 1–9 years. Toxicol Environ Chem 90(5):997–1008

    Google Scholar 

  • Gandhi DN, Dinesh KD (2014) Postnatal Behavioural Effects on the Progeny of Rat after Prenatal Exposure to Methylmercury. J Exp Biol 1(1):31–51

    Google Scholar 

  • Geier DA, Hooker BS, Kern JK, King PG, Sykes LK, Geier MR (2014) A Dose-Response Relationship between Organic Mercury Exposure from Thimerosal-Containing Vaccines and Neurodevelopmental Disorders. Int J Environ Res Public Health 11(9):9156–9170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geier DA, Kern JK, Homme KG, Geier MR (2018) The risk of neurodevelopmental disorders following Thimerosal-containing Hib vaccine in comparison to Thimerosal-free Hib vaccine administered from 1995 to 1999 in the United States. Int J Hygiene Environ Health 221(4):677–683

    CAS  Google Scholar 

  • Geier DA, Kern JK, King PG, Sykes LK, Geier MR (2015a) A Case-control study evaluating the relationship between thimerosal-containing haemophilus influenzae type b vaccine administration and the risk for a pervasive developmental disorder diagnosis in the United States. Bio Trace Elem Res 163:28–38

    CAS  Google Scholar 

  • Geier DA, King PG, Hooker BS, Dórea JG, Kern JK, Sykes LK, Geier MR (2015b) Thimerosal: clinical, epidemiologic and biochemical studies. Clin Chim Acta 444:212–220

    CAS  PubMed  Google Scholar 

  • Geier MR, Geier DA (2003) Neurodevelopmental disorders after thimerosal-containing vaccines: a brief communication. Exp Biol Med 228(6):660–664

    CAS  Google Scholar 

  • Gribble EJ, Hong S, Faustman EM (2005) The magnitude of methylmercury-induced cytotoxicity and cell cycle arrest is p53-dependent. Birth Defects Res A 73(1):29–38

    CAS  Google Scholar 

  • Guloksuz SA, Abali O, Cetin EA, Gazioglu SB, Deniz G, Yildirim A, Kawikova I, Guloksuz S, Leckman JF (2017) Elevated plasma concentrations of S100 calcium-binding protein B and tumor necrosis factor alpha in children with autism spectrum disorders. Braz J Psychiatry 39(3):195–200

    PubMed  PubMed Central  Google Scholar 

  • Gupta PD (1983) Ultrastructural study on semithin section. Sci Tools 30:6–7

    Google Scholar 

  • Gupta S, Sharma B (2014) Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol Biochem Behav 122:122–135

    CAS  PubMed  Google Scholar 

  • Hafidi A, Hillman DE (1997) Distribution of glutamate receptors GluR 2/3 and NR1 in the developing rat cerebellum. Neuroscience 81(2):427–436

    CAS  PubMed  Google Scholar 

  • Hawkins BT, Egleton RD, Davis TP (2005) Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol 289(1):212–219

    Google Scholar 

  • Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A et al (2009) 15q13.3 Microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41(2):160–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hornig M, Chian D, Lipkin WI (2004) Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry 9(9):833–845

    CAS  PubMed  Google Scholar 

  • Howlin P, Mawhood L, Rutter M (2000) Autism and Developmental Receptive Language Disorder—a follow-up comparison in early adult life. II: Social, behavioural, and psychiatric outcomes. J Child Psychol Psychiatry Allied Discip 41(5):561–578

    CAS  Google Scholar 

  • Ilarraza R, Wu Y, Adamko DJ (2012) Montelukast inhibits leukotriene stimulation of human dendritic cells in vitro. Int Arch Allergy Immunol 159(4):422–427

    CAS  PubMed  Google Scholar 

  • Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24(3):687–700

    CAS  PubMed  Google Scholar 

  • Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22(12):555-561

    CAS  PubMed  Google Scholar 

  • Jones S, Yakel JL (1997) Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504(3):603–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkman HO, Feuerbach D (2016) Modulatory effects of α7nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73(13):2511–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kern JK, Geier DA, Audhya T, King PG, Sykes LK, Geier MR (2012) Evidence of parallels between mercury intoxication and the brain pathology in autism. Acta Neurobiol Exp 72(2):113–153

    Google Scholar 

  • Kern JK, Geier DA, Sykes LK, Geier MR (2016a) Relevance of Neuroinflammation and Encephalitis in Autism. Front Cell Neurosci 9(128):1–10

    Google Scholar 

  • Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR (2016b) The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol 37:8–24

    CAS  PubMed  Google Scholar 

  • Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, Yakel JL (2002) Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol 540:425–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiernan JA (2001) Histological and histochemical methods: theory and practice, 3rd edn. Arnold Publisher, London, pp 111–162

    Google Scholar 

  • Kumar A, Prakash A, Pahwa D, Mishra J (2012) Montelukast potentiates the protective effect of rofecoxib against kainic acid-induced cognitive dysfunction in rats. Pharmacol Biochem Behav 103(1):43–52

    CAS  PubMed  Google Scholar 

  • Kumar H, Sharma B (2015) Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Res 1630:83–97

    PubMed  Google Scholar 

  • Kyrkanides S, Moore AH, Olschowka JA, Daeschner JAC, Williams JP, Hansen JT, O’Banion MK (2002) Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res 104(2):159–169

    CAS  PubMed  Google Scholar 

  • Lai J, Hu M, Wang H, Hu M, Long Y, Miao M, Li J, Wang X, Kong L, Hong H (2014) Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ 1–42 -induced memory impairment and neuro inflammatory and apoptotic responses in mice. Neuropharmacology 79:707–714

    CAS  PubMed  Google Scholar 

  • Lamb JA, Moore J, Bailey A, Monaco AP (2000) Autism : recent molecular genetic advances. Hum Mol Genet 9(6):861–868

    CAS  PubMed  Google Scholar 

  • Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iversen P, Bauman M, Perry E (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125(7):1483–1495

    CAS  PubMed  Google Scholar 

  • Liu JL, Zhao XH, Zhang DL, Zhang JB, Liu ZH (2015) Effect of montelukast on the expression of interleukin-18, telomerase reverse transcriptase, and Bcl-2 in the brain tissue of neonatal rats with hypoxic-ischemic brain damage. Genet Mol Res 14(3):8901–8908

    CAS  PubMed  Google Scholar 

  • Liu Q, Chen M, Sun L, Wallis CU, Zhou J, Ao L, Li Q, Sham PC (2019) Rational use of mesenchymal stem cells in the treatment of autism spectrum disorders. World J Stem Cells 11(2):55–73

    PubMed  PubMed Central  Google Scholar 

  • Luciana M, Conklin HM, Hooper CJ, Yarger RS (2005) The Development of Nonverbal working memory and executive control processes in adolescents. Child Dev 76(3):697–712

    PubMed  Google Scholar 

  • Magos L (2001) Review on the toxicity of ethylmercury including its presence as a preservative in biological and pharmaceutical products. J Appl Toxicol 21(1):1–5

    CAS  PubMed  Google Scholar 

  • Malik M, Tauqeer Z, Sheikh AM, Wen G, Nagori A, Yang K, Brown WT, Li X (2011) NF-κB signaling in the brain of autistic subjects. Mediators Inflamm 2011:1–10

    Google Scholar 

  • Marschallinger J, Schäffner I, Klein B, Gelfert R, Rivera FJ, Illes S, Grassner L, Janssen M, Peter Rotheneichner P, Schmuckermair C, Coras R, Boccazzi M, Chishty M, Lagler FB, Renic M, Bauer H, Singewald N, Blümcke I, Bogdahn U, Couillard-Despres S, Lie DC, Abbracchio MP, Aigner L (2015) Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 6:1–16

    Google Scholar 

  • Martin-ruiz CM, Lee M, Perry RH, Baumann M, Court JA, Perry EK (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123(1–2):81–90

    CAS  PubMed  Google Scholar 

  • Mcfarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7(2):152–163

    CAS  PubMed  Google Scholar 

  • Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J et al (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68(4):368–376

    PubMed  Google Scholar 

  • Namvarpour Z, Nasehi M, Amini A, Zarrindast MR (2018) Protective role of alpha-lipoic acid in impairments of social and stereotyped behaviors induced by early postnatal administration of thimerosal in male rat. Neurotoxicol Teratol 67:1–9

    CAS  PubMed  Google Scholar 

  • Nataf R, Skorupka C, Lam A, Springbett A, Lathe R (2008) Porphyrinuria in childhood autistic disorder is not associated with urinary creatinine deficiency. Pediatr Int 50(4):528–532

    PubMed  Google Scholar 

  • Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299:217–227

    CAS  PubMed  Google Scholar 

  • Olczak M, Duszczyk M, Mierzejewski P, Bobrowicz T, Majewska MD (2010a) Neonatal administration of thimerosal causes persistent changes in Mu opioid receptors in the rat brain. Neurochem Res 35(11):1840–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olczak M, Duszczyk M, Mierzejewski P, Wierzba-Bobrowicz T, Majewska MD (2010b) Lasting neuropathological changes in rat brain after intermittent neonatal administration of thimerosal. Folia. Neuropathol 48(4):258–269

    CAS  Google Scholar 

  • Ozonoff S, Iosif A, Baguio F, Cook IC, Hill MM, Hutman T, Rogers SJ, Rozga A, Sangha S, Sigman M, Steinfeld MB, Young GS (2010) A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry 49(3):256–266

    PubMed  PubMed Central  Google Scholar 

  • Parri HR, Hernandez CM, Dineley KT (2011) Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8):931–942

    CAS  PubMed  Google Scholar 

  • Perry EK, Lee MLW, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, Folly E, Iversen PE, Bauman ML, Perry RH, Wenk GL (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry 158(7):1058–1066

    CAS  PubMed  Google Scholar 

  • Pless R, Risher JF (2000) Mercury, infant neurodevelopment, and vaccination. J Pediatr 136(5):571–573

    CAS  PubMed  Google Scholar 

  • Plunkett LM (2007) Developmental neurotoxicity of industrial chemicals. Lancet 369:821

    PubMed  Google Scholar 

  • Price CS, Thompson WW, Goodson B, Weintraub ES, Croen A, Hinrichsen VL et al (2010) Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism. Pediatrics 126(4):656–664

    PubMed  Google Scholar 

  • Priya MDL, Geetha A (2011) Level of trace elements ( copper, zinc, magnesium and selenium ) and toxic elements ( lead and mercury ) in the hair and nail of children with autism. Biol Trace Elem Res 142(2):148–158

    Google Scholar 

  • Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J (2001) Postmortem brain abnormalities of the glutamate neurotransmitter system. Neurology 57(9):1618–1628

    CAS  PubMed  Google Scholar 

  • Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK (2019) A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer’s disease. Eur J Pharmacol 842:208–220

    CAS  PubMed  Google Scholar 

  • Rasalam AD, Hailey H, Williams JHG, Moore SJ, Turnpenny PD, Lloyd DJ, Dean JCS (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47(8):551–555

    CAS  PubMed  Google Scholar 

  • Ray MA, Graham AJ, Lee M, Perry RH, Court JA, Perry EK (2005) Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus. Neurobiol Dis 19(3):366–377

    CAS  PubMed  Google Scholar 

  • Reader MJ, Lines CB (1983) Decomposition of thimerosal in aqueous solution and its determination by high-performance liquid chromatography. J Pharm Sci 72(12):1406–1409

    CAS  PubMed  Google Scholar 

  • Rebane A, Runnel T, Aab A, Maslovskaja J, Rückert B, Zimmermann M, Plaas M, Kärner J, Treis A, Pihlap M, Haljasorg U, Hermann H, Nagy N, Kemeny L, Erm T, Kingo K, Li M, Boldin MP, Akdis CA (2014) MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 134(4):836–847.e11

    CAS  PubMed  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28(10):1563–1574

    CAS  PubMed  Google Scholar 

  • Rimland B (2004) Association between thimerosal-containing vaccine and autism. JAMA 291(2):180

    CAS  PubMed  Google Scholar 

  • Rosenblatt AE, Stien SL (2015) Cutaneous reactions to vaccinations. Clin Dermatol 33(3):327–332

    PubMed  Google Scholar 

  • Rozin SI (2017) Case series using montelukast in patients with memory loss and dementia. Open Neurol J 11(1):7–10

    PubMed  PubMed Central  Google Scholar 

  • Saad MA, Abdelsalam RM, Kenawy SA, Attia AS (2014) Montelukast, a cysteinyl leukotriene receptor-1 antagonist protects against hippocampal injury induced by transient global cerebral ischemia and reperfusion in rats. Neurochem Res 40(1):139–150

    PubMed  Google Scholar 

  • Sanico AM, Atsuta S, Proud D, Togias A (1998) Plasma extravasation through neuronal stimulation in human nasal mucosa in the setting of allergic rhinitis. J Appl Physiol 84(2):537–543

    CAS  PubMed  Google Scholar 

  • Schechter R, Grether JK (2008) Continuing increases in autism reported to california’s developmental services system: mercury in retrograde. Arch Gen Psychiatry 65(1):19–24

    PubMed  Google Scholar 

  • Sedaghat F, Notopoulos A (2008) S100 protein family and its application in clinical practice. Hippokratia 12(4):198–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seltzer MM, Shattuck P, Abbeduto L, Greenberg JS (2004) Trajectory of development in adolescents and adults with autism. Ment Retard Dev Disabil Res 10(4):234–247

    Google Scholar 

  • Shen J, Yakel JL (2009) Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin 30(6):673–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, Miller KJ, Frazier JA, Silverstein I, Picker J, Weissman L, Raffalli P, Jeste S, Demmer LA, Peters HK et al (2010) Clinical genetic testing for patients with autism spectrum disorders. Pediatrics 125(4):e727–e735

    PubMed  Google Scholar 

  • Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Minabe Y, Sugiyama T, Kawai M, Iyo M, Takei N, Mori N (2006) Increased serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1472–1477

    CAS  PubMed  Google Scholar 

  • Singh P, Sharma B (2016) Reversal in cognition impairments, cholinergic dysfunction, and cerebral oxidative stress through the modulation of ryanodine receptors (RyRs) and cysteinyl leukotriene-1 (CysLT1) receptors. Curr Neurovasc Res 13(1):10–21

    CAS  PubMed  Google Scholar 

  • Singh P, Gupta S, Sharma B (2015) Melatonin receptor and KATP channel modulation in experimental vascular dementia. Physiol Behav 142:66–78

    CAS  PubMed  Google Scholar 

  • Sokol DK, Maloney B, Westmark CJ, Lahiri DK (2019) Novel contribution of secreted amyloid-β precursor protein to white matter brain enlargement in autism spectrum disorder. Front Psychiatry 10:1–16

    Google Scholar 

  • St-Hilaire S, Ezike VO, Stryhn H, Thomas MA (2012) An ecological study on childhood autism. Int J Health Geogr 11:1–8

    Google Scholar 

  • Stigler K, McDonald BC, Anand A, Saykin AJ, McDougle CJ (2011) Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res 1380:146–161

    CAS  PubMed  Google Scholar 

  • Sudweeks SN, Yakel JL (2000) Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J Physiol 527:515–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tampellini D, Capetillo-zarate E, Dumont M, Huang Z, Yu F, Lin MT, Gouras GK (2010) Effects of synaptic modulation on β-amyloid, synaptophysin, and memory performance in Alzheimer’s disease transgenic mice. J Neurosci 30(43):14299–14304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Parkin JE (2000) Route of decomposition of thiomersal (thimerosal). Int J Pharm 208(1–2):23–34

    CAS  PubMed  Google Scholar 

  • Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 99(2):1012–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G et al (2014) Gene × environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 5(53):1–17

    Google Scholar 

  • Tsai LY (1999) Psychopharmacology in autism. Psychosom Med 61(5):651–665

    CAS  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2004) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81

    Google Scholar 

  • Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B 369(1654):1–10

    Google Scholar 

  • Vermeulen L, Wilde GD, Notebaert S, Berghe WV, Haegeman G (2002) Regulation of the transcriptional activity of the nuclear factor-kB p65 subunit. Biochem Pharmacol 64(5–6):963–970

    CAS  PubMed  Google Scholar 

  • Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R (2013) Traffic related air pollution, particulate matter, and autism. JAMA Psychiatry 70(1):71–78

    PubMed  PubMed Central  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154(8):1558–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker-azmitia PM (2001) Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56(5):479–485

    CAS  PubMed  Google Scholar 

  • World Health Organization (2019) Autism spectrum disorders. WHO, Geneva

    Google Scholar 

  • Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C, Xia W, Cao Y, Wu L (2017) Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci 173:43–54

    CAS  PubMed  Google Scholar 

  • Wu J, Cheng G, Lu Z, Wang M, Tian J, Bi Y (2016) Effects of methyl mercury chloride on rat hippocampus structure. Biol Trace Elem Res 171:124–130

    CAS  PubMed  Google Scholar 

  • Xu G, Strathearn L, Liu B, Bao W (2018) Prevalence of autism spectrum disorder among US children and adolescents, 2014–2016. JAMA 319(1):81–82

    PubMed  PubMed Central  Google Scholar 

  • Yakel JL (2013) Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflügers Arch 465(4):441–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young AMH, Campbell E, Lynch S, Suckling J, Powis SJ (2011) Aberrant NF-kappaB expression in autism spectrum condition : a mechanism for neuroinflammation. Front Psychiatry 2(27):1–8

    Google Scholar 

  • Young HA, Geier DA, Geier MR (2008) Thimerosal exposure in infants and neurodevelopmental disorders : an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci 271(1–2):110–118

    CAS  PubMed  Google Scholar 

  • Yu G, Wei E, Zhang S, Xu H, Chu L, Zhang W, Zhang Q, Chen Z, Mei R, Zhao M (2005) Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose- and time-dependently protects against focal cerebral ischemia in mice. Pharmacology 73(1):31–40

    CAS  PubMed  Google Scholar 

  • Zablotsky B, Black LI, Maenner JM, Schieve LA, Blumberg SJ (2015) Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Rep 87:1–21

    Google Scholar 

  • Zeidán-Chuliá F, Oliveira BD, Salmina AB, Casanova MF, Gelain DP, Noda M, Verkhratsky A, Moreira JC (2014) Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death Dis 5(5):1–13

    Google Scholar 

  • Zhang L, Chung SK, Chow BKC (2014) The knockout of secretin in cerebellar purkinje cells impairs mouse motor coordination and motor learning. Neuropsychopharmacology 39(6):1460–1468

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Lobna A. Abdelzaher and I. E. M. Ashry designed the study, collected all specimens, performed all the behavioral and ELISA experiments, and analyzed and interpreted the data. Lobna A. Abdelzaher was a major contributor in writing the manuscript. Ola A. Hussein performed all the histopathological, immunohistochemical, and electron microscopy studies and analyzed and interpreted their results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lobna A. Abdelzaher.

Ethics declarations

Conflict of interests:

The authors do not declare any conflicts of interest.

Ethical approval:

All the animal procedures were performed with approval from the Institutional Animal Care and Use Committee of Faculty of Medicine, Assuit University, and according to the National Institutes of Health Guidelines for the Human and treatment of Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelzaher, L.A., Hussein, O.A. & Ashry, I.E.M. The Novel Potential Therapeutic Utility of Montelukast in Alleviating Autistic Behavior Induced by Early Postnatal Administration of Thimerosal in Mice. Cell Mol Neurobiol 41, 129–150 (2021). https://doi.org/10.1007/s10571-020-00841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00841-2

Keywords

Navigation