Skip to main content
Log in

The Optical Properties of Individual Silver Nanoparticles in Ag/Ag2O Composites Synthesized by Oxygen Plasma Treatment of Silver Thin Films

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we present a more complete description of the optical properties of the silver nanoparticles formed in silver oxide thin films. Ag/Ag2O composites were synthesized by treating silver thin films manufactured by thermal evaporation method with oxygen plasma afterglow. The results showed that exposing silver thin films to oxygen plasma afterglow leads to a monocrystalline structure of silver oxide. Consequently, the relationship between the crystal size and the characteristics of the plasmon optical absorption peaks was studied. A slight degradation of plasmon peaks of the individual silver nanoparticles was observed. We suggested that this degradation might be due to the mutual interaction between the individual silver nanoparticles located near the Ag2O grain shell and the larger silver nanoparticles in neighboring grains. We found that the degree of degradation is related to the Ag2O grain size. On the other hand, the origin of each fluorescence peak in the Raman spectra of the prepared films was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sun W, Hong R, Liu Q, Li Z, Shi J, Tao C, Zhang D (2019) SERS-active Ag–Al alloy nanoparticles with tunable surface plasmon resonance induced by laser ablation. Opt Mater Opt Mater 96:109298

    Article  CAS  Google Scholar 

  2. Ding SY, Yi J, Li JF, Ren B, Wu DY, Panneerselvam R, Tian ZQ (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 16036:1–16

    Google Scholar 

  3. Chan YF, Zhang CX, Wu ZL, Zhao DM, Wang W, Xu HJ, Sun XM (2013) Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl Phys Lett 102:183118

    Article  Google Scholar 

  4. Madhavi V, Kondaiah P, Mohan Rao G (2018) Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis. Appl Surf Sci 436:708–719

    Article  CAS  Google Scholar 

  5. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Article  Google Scholar 

  6. Li J, Fang W, Yu C, Zhou W, Zhu L, Xie Y (2015) Ag-based semiconductorphotocatalysts in environmental purification. Appl Surf Sci 358:46–56

    Article  CAS  Google Scholar 

  7. Gomathi Devi L, Kavitha R (2016) A review on plasmonic metal–TiO2composite forgeneration, trapping, storing and dynamic vectorial transfer ofphotogenerated electrons across the Schottky junction in a photocatalyticsystem. Appl Surf Sci 360:601–622

    Article  CAS  Google Scholar 

  8. Maruno S (2019) Surface plasmon spectroscopy of thin composite films of Au nanoparticles and PEDOT:PSS conjugated polymer. Org Electron 64:154–157

    Article  CAS  Google Scholar 

  9. Detsri E, Popanyasak J (2015) Fabrication of silver nanoparticles/polyaniline composite thin films using layer-by-layer self-assembly technique for ammonia sensing. Colloids Surf A: Physicochem Eng Aspects 467:57–65

    Article  CAS  Google Scholar 

  10. Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76:29–33

    Article  CAS  Google Scholar 

  11. Fujiwara Y, Kobayashi Y, Kita K, Kakehashi R, Noro M, Katayama JI, Otsuka K (2008) Ag nanoparticle catalyst for electroless Cu deposition and promotion of its adsorption onto epoxy substrate. J Electrochem Soc 155:377–382

    Article  Google Scholar 

  12. Li Y, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  Google Scholar 

  13. Biswanath M, Moumita M (2009) Nonvolatile memory device based on Ag nanoparticle: characteristics improvement. Appl Phys Lett 94:233–236

    Google Scholar 

  14. Chiyah B, Kayed K (2018) Effect of annealing temperature on the structural and optical properties of silver oxide thin films prepared by thermal evaporation with subsequent annealing. IJNeaM 11:305–310

    Google Scholar 

  15. Yang GW, Li H (2008) Sonochemical synthesis of highly monodispersed and size controllable Ag nanoparticles in ethanol solution. Mater Lett 62:2189–2191

    Article  Google Scholar 

  16. Li S, Gao B, Wang Y, Jin B, Yue Q, Wang Z (2019) Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination. 464:94–104

    Article  CAS  Google Scholar 

  17. Zhao WB, Zhu JJ, Chen HY (2003) Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template. J Cryst Growth 258:176–180

    Article  CAS  Google Scholar 

  18. Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663

    Article  CAS  Google Scholar 

  19. S.T. Dubas, Preparation of silver nanoparticle thin films for sensing application (Ph.D. thesis), Department of Material Science, Chulalongkorn University,Bangkok, Thailand, 2007

  20. Harinee S, Muthukumar K, Dahms HU, Koperuncholan M, Vignesh S, Banu RJ, Ashok M, James RA (2019) Biocompatible nanoparticles with enhanced photocatalytic and anti-microfouling potential. Int Biodeterior Biodegradation 145:104790

    Article  Google Scholar 

  21. Huang LM, Wen TC (2007) One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Mater Sci Eng A445–446:7–13

    Article  Google Scholar 

  22. Filippo E, Serra A, Manno D (2009) Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. SensActuators B: Chem 138:625–630

    Article  CAS  Google Scholar 

  23. Ling L, Feng Y, Li H, Chen Y, Wen J, Zhu J, Bian Z (2019) Microwave induced surface enhanced pollutant adsorption and photocatalytic degradation on Ag/TiO2. Appl Surf Sci 483:772–778

    Article  CAS  Google Scholar 

  24. Mahapatra SS, Karak N (2008) Silver nanoparticle in hyperbranched polyamine: synthesis, characterization and antibacterial activity. Mater Chem Phys 112:1114–1119

    Article  CAS  Google Scholar 

  25. Wang Y (2006) A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning. Nanotechnology 17:3304–3307

    Article  CAS  Google Scholar 

  26. Wadayama H, Okabe T, Taniguchi J (2018) Fabrication of multilayered structure of silver nanorod arrays for plasmon memory. Microelectron Eng 193:47–53

    Article  CAS  Google Scholar 

  27. Li M, Wang Y, Xing Y, Zhong J (2020) P123-assisted preparation of Ag/Ag2O with significantly enhanced photocatalytic performance. Solid State Sci 99:106062

    Article  CAS  Google Scholar 

  28. Uğur Ş, Akaoğlu C, Kucukkahveci E (2019) A study on film formation and fluorescence enhancement of PS latex/AgNPs composites depending on AgNPs content and annealing. Colloids Surf A Physicochem Eng Asp 573:40–56

    Article  Google Scholar 

  29. Ren J, Tilley RD (2007) Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 129:3287–3291

    Article  CAS  Google Scholar 

  30. Chiua Y (2003) Fabrication and nonlinear optical properties of nanoparticle silver oxide films. J Appl Phys 94:1996–2001

    Article  Google Scholar 

  31. Lamprecht B (2000) Ultrafast plasmon dynamics in metal nanoparticles, Institute for Experimental Physics, Karl-Franzens University of Graz, Australia, Ph.D thesis

  32. Jian Z, Xiang Z, Yongchang W (2005) Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectron Eng 77:58–62

    Article  CAS  Google Scholar 

  33. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982

    Article  CAS  Google Scholar 

  34. Maalia A, Cardinal T, Treguer-Delapierre M (2003) Intrinsic fluorescence from individual silver nanoparticles. Phys E 17:559–560

    Article  Google Scholar 

  35. Alkhawwam A, Abdallaha B, Kayed K, Alshoufi K (2011) Effect of nitrogen plasma afterglow on amorphous carbon nitride thin films deposited by laser ablation. Acta Phys Pol A 120:545–551

    Article  CAS  Google Scholar 

  36. Kayed K (2010) Synthesis and properties of carbon nitride and boron nitride thin films prepared by different techniques, Damascus University Syria, Damascus, PhD thesis

  37. Kayed K (2018) Effect of nitrogen plasma afterglow on the (1000–1800) cm−1 band in FTIR spectra of amorphous carbon nitride thin films. Spectrochim Acta A Mol Biomol Spectrosc 190:253–258

    Article  CAS  Google Scholar 

  38. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe vonKolloidteilchen mittels Röntgenstrahlen, in: Kolloidchemie Ein Lehrbuch,Springer, pp. 387–409

  39. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:108–1090

    Article  Google Scholar 

  40. Choi BH, Lee HH, Jin S, Chun S, Kim SH (2007) Characterization of the optical properties of silver nanoparticle films. Nanotechnol. 18:075706

    Article  Google Scholar 

  41. Mandal SK, Roy RK, Pal AK (2002) Surface plasmon resonance in nanocrystalline silver particles embedded in SiO2 matrix. J Phys D Appl Phys 35:2198–2205

    Article  CAS  Google Scholar 

  42. Geoffrey I, Waterhouse N, Graham A, Bowmaker, Metson JB (2001) The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys:3838–3845

  43. Raju NRC, Kumar KJ, Subrahmanyam A (2009) Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J Phys D Appl Phys 42:135411 (6pp)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the University of Damascus and the Syrian Atomic Energy Commission for providing the facility to carry out this research. He would also like to thank Dr. A. Alkhawwam for the assistance during working on the Microwave SAIREM GMP 20 KEDS system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kayed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayed, K. The Optical Properties of Individual Silver Nanoparticles in Ag/Ag2O Composites Synthesized by Oxygen Plasma Treatment of Silver Thin Films. Plasmonics 15, 1439–1449 (2020). https://doi.org/10.1007/s11468-020-01169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01169-9

Keywords

Navigation