Skip to main content
Log in

The Relative Significance of Signal Amplitude and Rate of Its Change for Spike Generation in Amphibian Medullary Auditory Neurons

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

We investigated the responses of single neurons in the dorsal medullar nucleus of the grass frog (Rana temporaria L.) to tones with amplitude modulated by repetitive segments of low-frequency noise. The carrier frequency corresponded to the neuronal characteristic frequency within the range of 0.2-2.0 kHz. The responses were compared with current instantaneous values of the signal amplitude and the rate of its change. We detected neurons with responses modulated either by the current signal amplitude, or the rate of change in the amplitude, or a combination of both parameters. In the vast majority of neurons, the rate of change in the amplitude played a crucial role in spike generation. The data obtained were compared with functional features of neurons located in the mammalian cochlear nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Boer, E. and Kuyper, P., Triggered correlation, IEEE Trans. Biotmed. Eng., 1968, vol. 15, pp. 169–179.

    Article  Google Scholar 

  2. Bibikov, N.G., Correlation analysis of amplitude modulation coding in the cochlear nucleus of the lake frog, Sens. Sist., 1987, vol. 1, pp. 353–361.

    Google Scholar 

  3. van Stokkum, I.H.M., Sensitivity of neurons in the dorsal medullary nucleus of the grassfrog to spectral and temporal characteristics of sound, Hear. Res., 1987, vol. 29, pp. 223–235.

    Article  Google Scholar 

  4. Moller, A.R., Dynamic properties of the responses of single neurons in the cochlear nucleus, J. Physiol. (L.), 1976, vol. 259, pp. 63–82.

    Article  CAS  Google Scholar 

  5. Moller, A.R., Neural delay in the ascending auditory pathway, Exp. Brain Res., 1981, vol. 43, pp. 93–100.

    Article  CAS  Google Scholar 

  6. Moller, A.R., Use of pseudorandom noise in studies of frequency selectivity: The periphery of the auditory system, Biol. Cybern., 1983, vol. 47, pp. 95–102.

    Article  CAS  Google Scholar 

  7. Ferragamo, M.J., Golding, N.L., and Oertel, D., Synaptic inputs to stellate cells in the ventral cochlear nucleus, J. Neurophysiol., 1998, vol. 79, pp. 51–63.

    Article  CAS  Google Scholar 

  8. Golding, N.L. and Oertel, D., Synaptic integration in dendrites: exceptional need for speed, J. Physiol., 2012, vol. 590, pp. 5563–5569.

    Article  CAS  Google Scholar 

  9. Rhode, W.S., Response patterns to sound associated with labeled globular/bushy cells in cat, Neurosci., 2008, vol. 154, pp. 87–98.

    Article  CAS  Google Scholar 

  10. Bibikov, N.G., Reaction of neurons in the frog midbrain auditory center to tones amplitudemodulated by pseudorandom noise, Neirofiziol., 1990, vol. 22, pp. 227–235.

    CAS  Google Scholar 

  11. Bibikov, N.G., Correlation of neural responses in the cochlear nucleus with low_frequency noise amplitude modulation of a tonal signal, Acoust. Physics, 2014, vol. 60, pp. 597–607.

    Article  Google Scholar 

  12. Bibikov, N.G., Some features of sound signal envelope extracted by frog cochlear nucleus neurons, Biofizika, 2015, vol. 60, no. 3, pp. 506–518.

    CAS  PubMed  Google Scholar 

  13. Bibikov, N.G., Extraction of amplitude_modulated segments in a continuous tone by auditory neurons of the frog, Sovet. Fiz. Akust., 1988, vol. 34, pp. 400–401.

    Google Scholar 

  14. Zheng, Y. and Escabí, M.A., Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape, J. Neurosci., 2008, vol. 28(52), pp. 14 230–14 244.

    Article  CAS  Google Scholar 

  15. Bibikov, N.G., Quantitative estimation of changes in synchronization of the neural firing in a frog’s cochlear nucleus with the sound signal envelope during longterm adaptation, Acoust. Physics, 2008, vol. 54, pp. 554–579.

    Article  Google Scholar 

  16. Bibikov, N.G., Extraction of low_frequency envelope features of a tone by neurons of the frog midbrain auditory center, Sens. Sist., 2016, vol. 30, pp. 201–214.

    Google Scholar 

  17. Suckow, M.A., Terril, L.A., Grigdesby, C.F., and March, P.A., Evaluation of hypothermia_induced analgesia and influence of opioid antagonists in leopard frogs (Rana pipiens), Pharmacol. Biochem. Behav., 1999, vol. 63, pp. 39–43.

    Article  CAS  Google Scholar 

  18. Zimmermann, M., Ethical principles for maintenance and use of animals in neuroscience research, Neurosci. Lett., 1987, vol. 73, p. 1.

    Article  CAS  Google Scholar 

  19. Zhou, Y. and Wang, X., Cortical processing of dynamic sound envelope transitions, J. Neurosci., 2010, vol. 30, pp. 16 741–16 754.

    Article  CAS  Google Scholar 

  20. Steinberg, L.J. and Peca, J.L., Difference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls, J. Neurosci., 2011, vol. 31, pp. 3234–3242.

    Article  CAS  Google Scholar 

  21. Gai, Y., Kotak, V.C., Sanes, D.H., and Rinzel, J., On the localization of complex sounds: temporal encoding based on input_slope coincidence detection of envelopes, J. Neurophysiol., 2014, vol. 112, pp. 802–813.

    Article  Google Scholar 

  22. Huang, C. and Rinzel, J., A neuronal network model for pitch selectivity and representation, Front. Comput. Neurosci., 2016. https://doi.org/10.3389/fncom.2016.00057

    Google Scholar 

  23. Lapshin, D.N., Rozhkova, G.I., and Vedenina, V.Yu., On the stimulus parameters determining responses of cercal interneurons, Sens. Sist., 1997, vol. 11, pp. 176–180.

    Google Scholar 

  24. Ferragamo, M.J. and Oertel, D., Octopus cells of the mammalian ventral cochlear nucleus sense the gain of depolarization, J. Neurophysiol., 2002, vol. 87, pp. 2262–2270.

    Article  Google Scholar 

  25. Wu, S.H. and Oertel, D., Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus, J. Neurosci., 1984, vol. 4, pp. 1577–1588.

    Article  CAS  Google Scholar 

  26. Oertel, D., Bal, R., Gardner, S.M., Smith, P.H., and Joris, P.X., Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus, Proc. Nat. Acad. Sci. USA, 2000, vol. 97, pp. 11 773–11 779.

    Article  CAS  Google Scholar 

  27. McGinley, M.J. and Oertel, D., Rate thresholds determine the precision of temporal integration in principal cells of the ventral cochlear nucleus, Hear. Res., 2006, vol. 216–217, pp. 52–63.

    Article  Google Scholar 

  28. Oline, S.N., Ashida, G., and Burger, R.M., Tonotopic optimization for temporal processing in the cochlear nucleus, J. Neurosci., 2016, vol. 36, pp. 8500–8515.

    Article  CAS  Google Scholar 

  29. Yang, S. and Feng, A.S., Heterogeneous biophysical properties of frog dorsal medullary nucleus (cochlear nucleus) neuron, J. Neurophysiol., 2007, vol. 98, pp. 1953–1964.

    Article  Google Scholar 

  30. Zhao, H.B. and Liang, Z.A., Processing of modulation frequency in the dorsal cochlear nucleus of the guinea pig: amplitude modulated tones, Hear. Res., 1995, vol. 82, pp. 244–256.

    Article  CAS  Google Scholar 

  31. Vartanyan, I.A. and Gershuni, G.V., Responses of inferior colliculus neurons to amplitude_modulated signals when changing the carrier and modulation frequencies, Neirofiziol., 1971, vol. 4, pp. 12–22.

    Google Scholar 

  32. Gorodetskaya, O.N. and Bibikov, N.G., Responses of frog medullary auditory neurons to the presentation of tones with a sinusoidal amplitude modulation, Neirofiziol., 1985, vol. 17, pp. 390–398.

    Google Scholar 

  33. Drullman, R., Festen, J.M., and Plomp, R., Effect of reducing slow temporal modulations on speech reception, J. Acoust. Soc. Am., 1994, vol. 95, pp. 2670–2680.

    Article  CAS  Google Scholar 

  34. Eggermont, J.J. and Epping, W.J.M., Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. III. Stimulation with natural and synthetic mating, Hear. Res., 1986, vol. 24, pp. 255–268.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Programming was carried out by S.V. Nizamov.

Funding

This work was supported by the Russian Foundation for Basic Research; grant no. 16-04-01066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Ethics declarations

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed. This study did not involve human subjects as research objects.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2020, Vol. 56, No. 1, pp. 62–72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibikov, N.G. The Relative Significance of Signal Amplitude and Rate of Its Change for Spike Generation in Amphibian Medullary Auditory Neurons. J Evol Biochem Phys 56, 63–74 (2020). https://doi.org/10.1134/S0022093020010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020010081

Keywords

Navigation