Skip to main content
Log in

Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a fully discrete linearized Crank–Nicolson Galerkin–Galerkin finite element method for solving the partial differential equations which govern incompressible miscible flow in porous media. We prove optimal-order convergence of the fully discrete finite element solutions without any restrictions on the step size of time discretization. Numerical examples are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arbogast, T., Wheeler, M.F., Zhang, N.: A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33, 1669–1687 (1996)

    Article  MathSciNet  Google Scholar 

  2. Auscher, P., Qafsaoui, M.: Observations on \(W^{1,p}\) estimates for divergence elliptic equations with VMO coefficients. In: Bollettino dellUnione Matematica Italiana, Serie 8, vol. 5-B , pp. 487–509 (2002)

  3. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)

    Book  Google Scholar 

  4. Bear, J., Bachmat, Y.: A generalized theory of hydrodynamic dispersion in porous media. In: Symposium of Haifa, International Association of Hydrological Sciences, vol. 72, pp. 7–16 (1967)

  5. Chavent, G., Jaffre, J.: Mathematical Models and Finite Elements for Reservoir Simulation. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  6. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26, 1487–1512 (1989)

    Article  MathSciNet  Google Scholar 

  7. Douglas Jr., J.: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20, 681–696 (1983)

    Article  MathSciNet  Google Scholar 

  8. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)

    Article  MathSciNet  Google Scholar 

  9. Duran, R.G.: On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method. SIAM J. Numer. Anal. 25, 989–1001 (1988)

    Article  MathSciNet  Google Scholar 

  10. Evans, L.C.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)

    MATH  Google Scholar 

  11. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)

    Article  MathSciNet  Google Scholar 

  12. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)

    Article  MathSciNet  Google Scholar 

  13. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  Google Scholar 

  14. Gao, H., Li, B., Sun, W.: Unconditionally optimal error estimates of a Crank–Nicolson–Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  Google Scholar 

  15. Geissert, M.: Applications of discrete maximal Lp regularity for finite element operators. Numer. Math. 108, 121–149 (2007)

    Article  MathSciNet  Google Scholar 

  16. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  17. Jensen, M., Müller, R.: Stable Crank–Nicolson discretisation for incompressible miscible displacement problems of low regularity. In: Numerical Mathematics and Advanced Applications, pp. 469–477 (2010)

  18. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  Google Scholar 

  19. Li, B., Sun, W.: Linearized FE approximations to a nonlinear gradient flow. SIAM J. Numer. Anal. 52, 2623–2646 (2014)

    Article  MathSciNet  Google Scholar 

  20. Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)

    Article  MathSciNet  Google Scholar 

  21. Li, X., Rui, H.: Characteristic block-centered finite difference method for compressible miscible displacement in porous media. Appl. Math. Comput. 314, 391–407 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Li, X., Rui, H.: A MCC finite element approximation of incompressible miscible displacement in porous media. Comput. Math. Appl. 70, 750–764 (2015)

    Article  MathSciNet  Google Scholar 

  23. Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16, 284–299 (1979)

    Article  MathSciNet  Google Scholar 

  24. Ma, N.: Convergence analysis of miscible displacement in porous media by mixed finite element and orthogonal collocation methods, In: Proceedings of the 2010 International Conference on Computational and Information Sciences, pp. 399–401

  25. Ma, N., Lu, T., Yang, D.: Analysis of incompressible miscible displacement in porous media by characteristics collocation method. Numer. Methods Partial Differ. Equ. 22, 797–814 (2006)

    Article  MathSciNet  Google Scholar 

  26. Nirenberg, L.: An extended interpolation inequality. Ann. Sci. Norm. Sup. Pisa 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  27. Peaceman, D.W.: Fundamentals of Numerical Reservior Simulations. Elsevier, Amsterdam (1977)

    Google Scholar 

  28. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)

    Article  MathSciNet  Google Scholar 

  29. Shi, D., Liu, Q.: Unconditional superconvergent analysis of a new mixed finite element method for Ginzburg–Landau equation. Numer. Methods Partial Differ. Equ. 35, 422–439 (2019)

    Article  MathSciNet  Google Scholar 

  30. Sun, T., Yuan, Y.: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method. J. Comput. Appl. Math. 228, 391–411 (2009)

    Article  MathSciNet  Google Scholar 

  31. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, New York (1997)

    Book  Google Scholar 

  32. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

    Article  MathSciNet  Google Scholar 

  34. Wang, H., Zhao, W., Ewing, R.E., Al-Lawatia, M., Espedal, M.S., Telyakovskiy, A.S.: An Eulerian–Lagrangian solution technique for single-phase compositional flow in three-dimensional porous media. Comput. Math. Appl. 52, 607–624 (2006)

    Article  MathSciNet  Google Scholar 

  35. Wang, H., Zhao, W., Espedal, M.S., Telyakovskiy, A.S.: A component-based Eulerian–Lagrangian formulation for multicomponent multiphase compositional flow and transport in porous media. SIAM J. Sci. Comput. 35, B462–B486 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wahlbin, L.: Local behavior in finite element methods. In: Ciarlet, P.G., Lions, J.L. (eds.), Handbook of Numerical Analysis II: Finite Element Methods (Part 1), North-Holland, Amsterdam, pp. 353C522 (1991)

  37. Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    Article  MathSciNet  Google Scholar 

  38. Wang, J.: Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system. Numer. Math. 139, 479–503 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wheeler, M.F.: A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author’s work is partially supported by National Natural Science Foundation of China (Grant No. 11901142). The second author’s work is partially supported by the NSFC (Grant No. U1930402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of (3.14) when \(m=1\)

For \(m=1\), since \({\widehat{\mathbf{U}}}^{\frac{1}{2}}=\frac{1}{2}(\mathbf{U}^{1^*}+\mathbf{U}^0)\), the proof of (3.14) depends on the error estimate of \(({\mathcal {C}}^{1^*},\mathbf{U}^{1^*},P^{1^*})\). Thus, we let

$$\begin{aligned} e^{1^{*}}_c={\mathcal {C}}^{1^{*}}-c^1,\quad e^{1^{*}}_u=\mathbf{{U}}^{1^{*}}-\mathbf{{u}}^1,\quad e^{1^{*}}_p=P^{1^{*}}-p^1 \end{aligned}$$

and start from the estimate of \(\Vert e_c^{1^*}\Vert _{L^2}\).

Subtracting the system (2.14)–(2.16) from (1.1)–(1.3) yield

$$\begin{aligned}&\Phi \frac{e^{1^{*}}_c}{\tau }-\nabla \cdot (D(\mathbf{{u}}^0)\nabla e^{1^{*}}_c) +\frac{1}{2}{} \mathbf{u}^0\cdot \nabla e_c^{1^*} +\frac{1}{2}\nabla \cdot (\mathbf{u}^0 e_c^{1^*}) +\frac{1}{2}(q_I+q_P)e_c^{1^*}\nonumber \\&\quad = \nabla \cdot ([D(\mathbf{u}^0)-D(\mathbf{u}^1)]\nabla c^1) -\frac{1}{2}(\mathbf{u}^0-\mathbf{u}^1)\cdot \nabla c^1 -\frac{1}{2}\nabla \cdot ((\mathbf{u}^0-\mathbf{u}^1)c^1) +R^{1^{*}}_{tr} \end{aligned}$$
(A.1)
$$\begin{aligned}&-\,\nabla \cdot \left( \frac{k(x)}{\mu ({\mathcal {C}}^{1^{*}})}\nabla e^{1^{*}}_p\right) =\nabla \cdot \left( \left( \frac{k(x)}{\mu ({\mathcal {C}}^{1^{*}})} -\frac{k(x)}{\mu (c^{1})}\right) \nabla p^1\right) \end{aligned}$$
(A.2)
$$\begin{aligned}&e^{1^{*}}_u=-\,\frac{k(x)}{\mu ({\mathcal {C}}^{1^*})}\nabla e^{1^{*}}_p-\left( \frac{k(x)}{\mu ({\mathcal {C}}^{1^*})}-\frac{k(x)}{\mu (c^1)}\right) \nabla p^1 \end{aligned}$$
(A.3)

under the boundary condition

$$\begin{aligned} \begin{aligned}&\frac{k(x)}{\mu ({\mathcal {C}}^{1^*})}\nabla e_p^{1^*}\cdot \mathbf{n}=0, \quad D(\mathbf{{u}}^{0})\nabla e_c^{1^*}\cdot \mathbf{n}=0 . \end{aligned} \end{aligned}$$

Here, we have used \(\mathbf{U}^0=\mathbf{u}^0\) and \(R_{tr}^{1^*}\) denotes the truncation error at the initial time step. By Taylor expansion and (2.8), we have

$$\begin{aligned} \Vert R_{tr}^{1^{*}}\Vert _{L^2}\le C\tau . \end{aligned}$$
(A.4)

To obtain the estimate of \(\Vert e_c^{1^*}\Vert _{L^2}\), we multiply (A.1) by \(e^{1^{*}}_c\), integrate it over \(\Omega \) and get

$$\begin{aligned} \Vert e^{1^*}_c\Vert ^2_{L^2}+\tau \Vert \sqrt{D(\mathbf{u}^0)}\nabla e^{1^*}_c\Vert ^2_{L^2}&\le C\tau \Big ( \Vert \mathbf{u}^0\Vert _{L^\infty }\Vert \nabla e_c^{1^*}\Vert _{L^2}\Vert e_c^{1^*}\Vert _{L^2} +\Vert q_I+q_P\Vert _{L^3}\Vert e_c^{1^*}\Vert _{L^2}\Vert e_c^{1^*}\Vert _{L^6}\\&\quad +\,\Vert \mathbf{u}^1-\mathbf{u}^0\Vert _{H^1}\Vert c^1\Vert _{W^{2,4}}\Vert e_c^{1^*}\Vert _{L^2} +\Vert R_{tr}^{1^*}\Vert _{L^2}\Vert e_c^{1^*}\Vert _{L^2} \Big )\\&\le \frac{1}{2}\Vert e_c^{1^*}\Vert ^2_{L^2} +C\tau ^2\Vert \nabla e_c^{1^*}\Vert _{L^2}^2 +C\tau ^2\Vert \mathbf{u^0}-\mathbf{u}^1\Vert _{H^1}^2 +C\tau ^2\Vert R_{tr}^{1^*}\Vert _{L^2}^2 \\&\le \frac{1}{2}\Vert e_c^{1^*}\Vert _{L^2}^2 +\varepsilon \tau \Vert \sqrt{D(\mathbf{u}^0)}\nabla e^{1^*}_c\Vert ^2_{L^2} +C\tau ^4, \end{aligned}$$

where we have used (2.8), (A.4) and let \(\tau \le \tau _1=\frac{\varepsilon }{C}\). The above estimate implies

$$\begin{aligned} \Vert e^{1^*}_c\Vert _{L^2}+\tau ^{\frac{1}{2}}\Vert \nabla e^{1^*}_c\Vert _{L^2}\le C\tau ^2. \end{aligned}$$
(A.5)

To obtain the estimate of \(\Vert e_c^{1^*}\Vert _{H^2}\), we multiply (A.1) by \(-\,\nabla \cdot (D(\mathbf{u}^0)\nabla e^{1^{*}}_c)\), integrate the resulting equation and have

$$\begin{aligned}&\Phi \Vert \sqrt{D(\mathbf{{u}}^0)}\nabla e^{1^{*}}_c\Vert _{L^2}^2 +\tau \Vert \nabla \cdot (D(\mathbf{u}^0)\nabla e^{1^{*}}_c)\Vert ^2_{L^2} \\&\le C\tau \Big ( \Vert \mathbf{u}^0\Vert _{W^{1,4}}^2\Vert e_c^{1^*}\Vert _{H^1}^2 +\Vert q_I+q_P\Vert _{L^3}^2\Vert e_c^{1^*}\Vert _{L^6}^2 +\Vert \mathbf{u}^1-\mathbf{u}^0\Vert _{H^1}^2\Vert c^1\Vert _{W^{2,4}}^2 +\Vert R_{tr}^{1^{*}}\Vert _{L^2}^2\Big ) \\&\quad +\,\frac{\tau }{2}\Vert \nabla \cdot (D(\mathbf {u}^0)\nabla e_c^{1^{*}})\Vert _{L^2}^2\\&\le \frac{\tau }{2}\Vert \nabla \cdot (D(\mathbf {u}^0)\nabla e_c^{1^{*}})\Vert _{L^2}^2 +C\tau ^3. \end{aligned}$$

By noting \(\Vert e_c^{1^*}\Vert _{H^2} \le C\Vert \nabla \cdot (D(\mathbf {u}^0)\nabla e_c^{1^*})\Vert _{L^2} +C\Vert e_c^{1^*}\Vert _{H^1}, \) we arrive at

$$\begin{aligned} \Vert e^{1^*}_c\Vert _{H^2}\le C\tau . \end{aligned}$$
(A.6)

Thus,

$$\begin{aligned} \Vert {{\mathcal {C}}}^{1^*}\Vert _{H^2}\le \Vert c^1\Vert _{H^2}+\Vert e^{1^*}_c\Vert _{H^2}\le C, \end{aligned}$$
(A.7)

with which, we multiply (A.2) by \(e^{1^*}_p\), integrate the resulting equation and get

$$\begin{aligned} {}&\Vert \nabla e^{1^*}_p\Vert _{L^2} \le C\bigg \Vert \bigg (\frac{k(x)}{\mu ({{\mathcal {C}}}^{1^*})}-\frac{k(x)}{\mu (c^1)}\bigg )\nabla p^1\bigg \Vert _{L^2} \le C\Vert e^{1^*}_c\Vert _{L^2}\Vert \nabla p^1\Vert _{L^{\infty }} \le C\Vert e^{1^*}_c\Vert _{L^2} \le C\tau ^2 \end{aligned}$$
(A.8)
$$\begin{aligned} {}&\Vert e^{1^*}_u\Vert _{L^2} \le C(\Vert \nabla e^{1^*}_p\Vert _{L^2}+\Vert e^{1^*}_c\Vert _{L^2}\Vert \nabla p^1\Vert _{L^{\infty }}) \le C\Vert e^{1^*}_c\Vert _{L^2}\le C\tau ^2. \end{aligned}$$
(A.9)

Moreover, (A.2) can be rewritten as follows

$$\begin{aligned} -\,\Delta e_p^{1^*} = \frac{\mu ({\mathcal {C}}^{1^*})}{k(x)} \left( \nabla \left( \frac{k(x)}{\mu ({\mathcal {C}}^{1^*})}\right) \cdot \nabla e_p^{1^*} \right) +\frac{\mu ({\mathcal {C}}^{1^*})}{k(x)}\left[ \nabla \cdot \bigg ( \bigg (\frac{k(x)}{\mu ({\mathcal {C}}^{1^*})}-\frac{k(x)}{\mu (c^1)}\bigg ) \nabla p^1 \bigg )\right] .\qquad \quad \end{aligned}$$
(A.10)

Applying Lemma 3.1 to the above equality and with (A.3), we can easily see that

$$\begin{aligned} \Vert e_p^{1^*}\Vert _{H^2} +\Vert e_u^{1^*}\Vert _{H^1} \le C\Vert e_c^{1^*}\Vert _{H^1} \le C\tau ^{\frac{3}{2}}. \end{aligned}$$
(A.11)

Furthermore, by the same method as used in (3.33)–(3.36), we can get from (A.3) and (A.10) that

$$\begin{aligned} \Vert e_p^{1^*}\Vert _{H^3}+\Vert e_u^{1^*}\Vert _{H^2}\le C\Vert e_c^{1^*}\Vert _{H^2}\le C\tau . \end{aligned}$$

The above result yields

$$\begin{aligned} \Vert \mathbf{U}^{1^*}\Vert _{L^\infty } \le \Vert \mathbf{u}^{1}\Vert _{L^\infty }+\Vert e_u^{1^*}\Vert _{L^\infty } \le \Vert \mathbf{u}^{1}\Vert _{L^\infty }+C\Vert e_u^{1^*}\Vert _{H^2} \le \Vert \mathbf{u}^{1}\Vert _{L^\infty }+C\tau \le C. \end{aligned}$$
(A.12)

Since \({\widehat{\mathbf{U}}}^{\frac{1}{2}}=\frac{1}{2}(\mathbf{U}^{1^*}+\mathbf{U}^0)\), from (A.11) and  (A.12), we have

$$\begin{aligned}&\Vert {\widehat{\mathbf{U}}}^{\frac{1}{2}}\Vert _{L^\infty } \le \frac{1}{2}(\Vert \mathbf{U}^{1^*}\Vert _{L^\infty }+\Vert \mathbf{U}^0\Vert _{L^\infty }) \le C \end{aligned}$$
(A.13)
$$\begin{aligned}&\Vert {\widehat{\mathbf{U}}}^{\frac{1}{2}}-\mathbf{u}^{\frac{1}{2}}\Vert _{H^1} \le \Vert {\widehat{\mathbf{U}}}^{\frac{1}{2}}-\overline{\mathbf{u}}^{\frac{1}{2}}\Vert _{H^1} +\Vert \overline{\mathbf{u}}^{\frac{1}{2}}-\mathbf{u}^{\frac{1}{2}}\Vert _{H^1} \le C\tau ^{\frac{3}{2}}. \end{aligned}$$
(A.14)

To prove the estimate of \(\Vert e_c^1\Vert _{L^2}\) and \(\Vert e_c^1\Vert _{H^2}\), we just apply the same method as used in (3.25) and (3.27). With the estimate (A.14), we can obtain the following results

$$\begin{aligned}&\Vert e^{1}_c\Vert _{L^2}+\tau ^{\frac{1}{2}}\Vert \nabla {e}_{c}^{1}\Vert _{L^2}\le C\tau ^2 \end{aligned}$$
(A.15)
$$\begin{aligned}&\Vert e_c^1\Vert _{H^1}+\tau ^{\frac{1}{2}}\Vert e_c^1\Vert _{H^2} \le C\tau ^2 \end{aligned}$$
(A.16)
$$\begin{aligned}&\Vert e^1_c\Vert _{H^2}\le C\tau ^{\frac{3}{2}}\le \frac{1}{4}, \end{aligned}$$
(A.17)

where we have noted \(e_c^0=0\) and let \(\tau \le \tau _2=(\frac{1}{4C})^{\frac{2}{3}}\). Thus,

$$\begin{aligned} \Vert {{\mathcal {C}}}^{1}\Vert _{H^2}\le \Vert c^1\Vert _{H^2}+\Vert e^{1}_c\Vert _{H^2} \le K+1. \end{aligned}$$
(A.18)

From (3.22), (3.24) and (3.35)–(3.36), we can see that

$$\begin{aligned}&\Vert e_u^1\Vert _{H^1}\le C(\Vert e_p^1\Vert _{H^2}+\Vert e_c^1\Vert _{H^1})\le C\Vert e_c^1\Vert _{H^1}\le C\tau ^2 \end{aligned}$$
(A.19)
$$\begin{aligned}&\Vert e_p^1\Vert _{H^3}\le C\Vert e_c^1\Vert _{H^2}\le C\tau ^{\frac{3}{2}}\le \frac{1}{4} \end{aligned}$$
(A.20)
$$\begin{aligned}&\Vert e_u^1\Vert _{H^2}\le C(\Vert e_p^1\Vert _{H^3}+\Vert e_c^1\Vert _{H^2})\le C\Vert e_c^1\Vert _{H^2}\le C\tau ^{\frac{3}{2}}\le \frac{1}{4} \end{aligned}$$
(A.21)
$$\begin{aligned}&\Vert D_\tau e_u^{1}\Vert _{L^\infty } \le \frac{1}{\tau }\Vert e_u^{1}\Vert _{W^{1,4}} \le \frac{C}{\tau }\Vert e_u^1\Vert _{H^1}^{\frac{1}{4}}\Vert e_u^1\Vert _{H^2}^{\frac{3}{4}} \le C\tau ^{\frac{5}{8}} \le \frac{1}{4}, \end{aligned}$$
(A.22)

when \(\tau \le \tau _3=(\frac{1}{4C})^{\frac{8}{5}}\). Furthermore, taking \(n=1\) in (3.38) leads to

$$\begin{aligned}&\Vert e_c^1\Vert _{W^{2,4}} \le C\tau , \end{aligned}$$
(A.23)
$$\begin{aligned}&\Vert {\mathcal {C}}^1\Vert _{W^{2,4}} \le \Vert c^1\Vert _{W^{2,4}} +\Vert e_c^1\Vert _{W^{2,4}} \le \Vert c^1\Vert _{W^{2,4}}+C\tau \le C. \end{aligned}$$
(A.24)

Thus, (3.14) holds for \(m=1\).

B Proof of (3.53) for \(m=1\)

For \(m=1\), since \({\widehat{\mathbf{U}}}_h^{\frac{1}{2}}=\frac{1}{2}(\mathbf{U}_h^{1^*}+\mathbf{U}^0_h)\), the proof of (3.53) depends on the error estimate of \(({\mathcal {C}}_h^{1^*},\mathbf{U}_h^{1^*},P_h^{1^*})\). Let

$$\begin{aligned} \theta _c^{1^*}={\mathcal {C}}_h^{1^*}-R_h^{1^*}{\mathcal {C}}^{1^*},\quad \theta _p^{1^*}=P_h^{1^*}-Q_hP^{1^*}. \end{aligned}$$

The numerical scheme (2.6)–(2.7) and the time-discrete system  (2.14)–(2.15) yield the following error equations for \(\theta _c^{1^*}\) and \(\theta _p^{1^*}\),

$$\begin{aligned}&\frac{\Phi }{\tau }(\theta _c^{1^*}, \phi _h) +(D(\mathbf{U}^0_h)\nabla \theta _c^{1^*}, \nabla \phi _h)\nonumber \\&= -\,\frac{1}{2}((\mathbf{U}^0_h-\mathbf{U}^0)\cdot \nabla {\mathcal {C}}_h^{1^*}, \phi _h) -\frac{1}{2}(\mathbf{U}^0\cdot \nabla ({\mathcal {C}}^{1^*}_h-{\mathcal {C}}^{1^*}), \phi _h) +\frac{1}{2}((\mathbf{U}_h^0-\mathbf{U}^0){\mathcal {C}}_h^{1^*} ,\nabla \phi _h) \nonumber \\&\quad +\,\frac{1}{2}(\mathbf{U}^0({\mathcal {C}}_h^{1^*}-{\mathcal {C}}^{1^*}),\nabla \phi _h) -\frac{1}{2}((q_I+q_P)({\mathcal {C}}^{1^*}_h-{\mathcal {C}}^{1^*}), \phi _h) +\frac{\Phi }{\tau }({\mathcal {C}}^{1^*}-R_h^{1^*}{\mathcal {C}}^{1^*}, \phi _h) \nonumber \\&\quad +\,\frac{\Phi }{\tau }({\mathcal {C}}_h^{0}-{\mathcal {C}}^{0}, \phi _h) -((D(\mathbf{U}^0_h)-D(\mathbf{U}^0))\nabla R_h^{1^*}{\mathcal {C}}^{1^*}, \nabla \phi _h)\nonumber \\&\quad -(D(\mathbf{U}^0)\nabla (R_h^{1^*}{\mathcal {C}}^{1^*}-R_h^0{\mathcal {C}}^{1^*}),\nabla \phi _h) \end{aligned}$$
(B.1)
$$\begin{aligned}&\left( \frac{k(x)}{\mu ({\mathcal {C}}_h^{1^*})}\nabla \theta _p^{1^*}, \nabla \varphi _h\right) = \left( \frac{k(x)}{\mu ({\mathcal {C}}^{1^*}_h)}\nabla (P^{1^*}-Q_hP^{1^*}), \nabla \varphi _h\right) \nonumber \\&\quad -\left( \left( \frac{k(x)}{\mu ({\mathcal {C}}^{1^*}_h)}-\frac{k(x)}{\mu ({\mathcal {C}}^{1^*})}\right) \nabla P^{1^*}, \nabla \varphi _h\right) . \end{aligned}$$
(B.2)

Since \({\mathcal {C}}_h^0\) is the Lagrangian interpolation of \({\mathcal {C}}^0\), we can easily get \(\Vert \theta _c^0\Vert _{L^2}\le Ch^2\Vert {\mathcal {C}}^0\Vert _{H^2}\le Ch^2\) and \(\Vert {\mathcal {C}}_h^0\Vert _{L^\infty }\le C\Vert {\mathcal {C}}^0\Vert _{H^2}\le C\). From (2.4), (2.12) and (3.52), we have

$$\begin{aligned}&\Vert \theta _p^0\Vert _{H^1} \le C(\Vert \theta _c^0\Vert _{L^2}+Ch^2)\le Ch^2 \\&\Vert \mathbf{U}_h^0-\mathbf{U}^0\Vert _{L^2}\le C(\Vert \nabla (P_h^0-P^0)\Vert _{L^2}+\Vert {\mathcal {C}}_h^0-{\mathcal {C}}^0\Vert _{L^2})\le Ch^2 \end{aligned}$$

and

$$\begin{aligned}&\Vert \nabla P_h^0\Vert _{L^\infty }\le \Vert \nabla Q_hP^0\Vert _{L^\infty }+Ch^{-\frac{d}{2}}\Vert \nabla \theta _p^0\Vert _{L^2}\le C \\&\Vert \mathbf{U}_h^0\Vert _{L^\infty }\le C\Vert \nabla P_h^0\Vert _{L^\infty }\le C. \end{aligned}$$

Then, taking \(\phi _h=\theta _c^{1^*}\) in (B.1) results in

$$\begin{aligned}&\Vert \theta _c^{1^*}\Vert _{L^2}^2 +\tau \Vert \nabla \theta _c^{1^*} \Vert _{L^2}^2 \nonumber \\&\le C\Big ( \tau \Vert \mathbf{U}_h^0-\mathbf{U}^0\Vert _{L^\infty }\Vert \nabla \theta _c^{1^*}\Vert _{L^2}\Vert \theta _c^{1^*}\Vert _{L^2} +\tau \Vert \mathbf{U}_h^0-\mathbf{U}^0\Vert _{L^2}\Vert \nabla R_h^{1^*}{\mathcal {C}}^{1^*}\Vert _{L^3}\Vert \theta _c^{1^*}\Vert _{L^6}\nonumber \\&\quad +\tau \Vert \nabla \cdot \mathbf{U}^0\Vert _{L^3}\Vert {\mathcal {C}}_h^{1^*}-{\mathcal {C}}^{1^*}\Vert _{L^2}\Vert \theta _c^{1^*}\Vert _{L^6} +\tau \Vert \mathbf{U}^0\Vert _{L^\infty }\Vert {\mathcal {C}}_h^{1^*}-{\mathcal {C}}^{1^*}\Vert _{L^2}\Vert \nabla \theta _c^{1^*}\Vert _{L^2} \nonumber \\&\quad +\tau \Vert \mathbf{U}_h^0-\mathbf{U}^0\Vert _{L^2}\Vert R_h^{1^*}{\mathcal {C}}^{1^*}\Vert _{L^\infty }\Vert \nabla \theta _c^{1^*}\Vert _{L^2} +\tau \Vert q_I+q_P\Vert _{L^3}\Vert {\mathcal {C}}_h^{1^*}-{\mathcal {C}}^{1^*}\Vert _{L^2}\Vert \theta _c^{1^*}\Vert _{L^6} \nonumber \\&\quad +\Vert {\mathcal {C}}^{1^*}-R_h^{1^*}{\mathcal {C}}^{1^*}\Vert _{L^2}\Vert \theta _c^{1^*}\Vert _{L^2} +\Vert {\mathcal {C}}_h^0-{\mathcal {C}}^0\Vert _{L^2}\Vert \theta _c^{1^*}\Vert _{L^2} \nonumber \\&\quad +\tau \Vert \mathbf{U}_h^0-\mathbf{U}^0\Vert _{L^2}\Vert \nabla R_h^{1^*}{\mathcal {C}}^{1^*}\Vert _{L^\infty }\Vert \nabla \theta _c^{1^*}\Vert _{L^2} +\tau \Vert \nabla (R_h^{1^*}{\mathcal {C}}^{1^*}-R_h^0{\mathcal {C}}^{1^*})\Vert _{L^2}\Vert \nabla \theta _c^{1^*}\Vert _{L^2} \Big ) \nonumber \\&\le \frac{1}{2}\Vert \theta _c^{1^*}\Vert _{L^2}^2 +C\tau ^2\Vert \nabla \theta _c^{1^*}\Vert _{L^2}^2 +C(\tau h+h^2)^2, \end{aligned}$$
(B.3)

where we have used (3.43)–(3.44), (3.46), (3.48) and the fact \(\nabla \cdot \mathbf{U^0}=q_I-q_P\). Let \(\tau \le \tau _{10}=\frac{1}{2C}\), we can easily arrive at

$$\begin{aligned} \Vert \theta _c^{1^*}\Vert _{L^2}+\tau ^{\frac{1}{2}}\Vert \nabla \theta _c^{1^*}\Vert _{L^2} \le C(\tau h+h^2). \end{aligned}$$
(B.4)

Now, we prove the boundedness of \(\Vert {\mathcal {C}}_h^{1^*}\Vert _{L^\infty }\) and \(\Vert \mathbf{U}^{1^*}\Vert _{L^\infty }\). When \(\tau \le h\), the above inequality implies that \(\Vert \theta _c^{1^*}\Vert _{L^2}\le C h^2\) and

$$\begin{aligned} \Vert {\mathcal {C}}_h^{1^*}\Vert _{L^\infty } \le \Vert R_h^{1^*}{\mathcal {C}}^{1^*}\Vert _{L^\infty }+Ch^{-\frac{d}{2}}\Vert \theta _c^{1^*}\Vert _{L^2} \le C\Vert {\mathcal {C}}^{1^*}\Vert _{H^2}+Ch^{-\frac{d}{2}}h^2 \le C. \end{aligned}$$

Taking \(\varphi _h=\theta _p^{1^*}\) in (B.2) yields

$$\begin{aligned}&\Vert \nabla \theta _p^{1^*}\Vert _{L^2} \le C(h^2\Vert P^{1^*}\Vert _{H^3} +\Vert {\mathcal {C}}^{1^*}-{\mathcal {C}}^{1^*}_h\Vert _{L^2}\Vert \nabla P^{1^*}\Vert _{L^{\infty }} ) \le Ch^2 \\&\Vert \nabla P_h^{1^*}\Vert _{L^\infty } \le \Vert \nabla Q_hP^{1^*}\Vert _{L^\infty }+Ch^{-\frac{d}{2}}\Vert \nabla \theta _p^{1^*}\Vert _{L^2} \le C. \end{aligned}$$

When \(\tau \ge h\), (B.4) implies that \(\Vert \theta _c^{1^*}\Vert _{H^1}\le C\tau ^{-\frac{1}{2}}(\tau h+h^2) \le C\tau ^{\frac{1}{2}} h\) and

$$\begin{aligned} \Vert {\mathcal {C}}_h^{1^*}\Vert _{L^\infty } \le \Vert R_h^{1^*}{\mathcal {C}}^{1^*}\Vert _{L^\infty }+Ch^{-\frac{1}{2}}\Vert \theta _c^{1^*}\Vert _{H^1} \le C\Vert {\mathcal {C}}^{1^*}\Vert _{H^2}+Ch^{-\frac{1}{2}}\tau ^{\frac{1}{2}} h \le C. \end{aligned}$$

Applying the same method as used in (3.59)-(3.61), we can get

$$\begin{aligned}&\Vert \nabla \theta _p^{1^*}\Vert _{L^6}\le Ch \\&\Vert \nabla P_h^{1^*}\Vert _{L^\infty }\le \Vert \nabla Q_hP^{1^*}\Vert _{L^\infty }+Ch^{-\frac{1}{2}}\Vert \nabla \theta _p^m\Vert _{L^6}\le C. \end{aligned}$$

Thus, we obtain the boundedness of \(\Vert {\mathcal {C}}_h^{1^*}\Vert _{L^\infty }\) and \(\Vert \nabla P_h^{1^*}\Vert _{L^\infty }\), with which and (2.5) and (2.16), we further have

$$\begin{aligned}&\Vert \mathbf{U}_h^{1^*}\Vert _{L^\infty } \le C\left\| \frac{k(x)}{\mu ({\mathcal {C}}_h^{1^*})}\nabla P_h^{1^*}\right\| _{L^\infty } \le C\left\| \nabla P_h^{1^*}\right\| _{L^\infty } \le C \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf{U}_h^{1^*}-\mathbf{U}_h^{1^*}\Vert _{L^2}&\le C(\Vert \nabla (P^{1^*}-P_h^{1^*})\Vert _{L^2}+\Vert {\mathcal {C}}^{1^*}-{\mathcal {C}}_h^{1^*}\Vert _{L^2}\Vert \nabla P^{1^*}\Vert _{L^\infty }) \\&\le C(h^2\Vert P^{1^*}\Vert _{H^3}+\Vert \theta _c^{1^*}\Vert _{L^2}+h^2\Vert {\mathcal {C}}^{1^*}\Vert _{H^2}) \\&\le C(\tau h+h^2). \end{aligned}$$

Since \({\widehat{\mathbf{U}}}_h^{\frac{1}{2}}=\frac{1}{2}(\mathbf{U}_h^{1^*}+\mathbf{U}_h^0)\), we arrive at

$$\begin{aligned}&\Vert {\widehat{\mathbf{U}}}_h^{\frac{1}{2}}\Vert _{L^\infty } \le \frac{1}{2}(\Vert \mathbf{U}_h^{1^*}\Vert _{L^\infty }+\Vert \mathbf{U}_h^0\Vert _{L^\infty }) \le C \end{aligned}$$
(B.5)
$$\begin{aligned}&\Vert {\widehat{\mathbf{U}}}_h^{\frac{1}{2}}-{\widehat{\mathbf{U}}}^{\frac{1}{2}}\Vert _{L^2} \le \frac{1}{2}\Vert \mathbf{U}_h^{1^*}-\mathbf{U}^{1^*}\Vert _{L^2} +\frac{1}{2}\Vert \mathbf{U}_h^{0}-\mathbf{U}^{0}\Vert _{L^2} \le C(\tau h+h^{2}). \end{aligned}$$
(B.6)

To prove (3.53) for \(m=1\), we can apply the similar method as presented in the analysis of (3.65). By using (B.6) instead of (3.64) in the estimates of \(|I_1(\overline{\theta }_c^{\frac{1}{2}})|\), \(|I_3(\overline{\theta }_c^{\frac{1}{2}})|\) and \(|I_7(\overline{\theta }_c^{\frac{1}{2}})|\), we obtain the following result from (3.51) (taking \(n=1\)),

$$\begin{aligned} \Vert \theta _c^1\Vert ^2_{L^2}&+\tau \Vert \nabla \overline{\theta }_h^{\frac{1}{2}} \Vert ^2_{L^2} \le \frac{\tau }{2}\Vert \nabla \overline{\theta }_c^{\frac{1}{2}}\Vert _{L^2}^2\\ {}&+C(\tau \Vert \theta _c^1\Vert _{L^2}^2+\tau \Vert D_\tau ({\mathcal {C}}^1-R_h^{1}{\mathcal {C}}^1)\Vert _{H^{-1}}^2 +\Vert \theta _c^{0}\Vert _{L^2}^2 +(\tau h+h^2)^2). \end{aligned}$$

Let \(\tau \le \tau _{11}=\frac{1}{2C}\), the above inequality yields

$$\begin{aligned} \Vert \theta _c^1\Vert _{L^2} +\tau ^{\frac{1}{2}}\Vert \nabla \overline{\theta }_h^{\frac{1}{2}} \Vert _{L^2} \le C(\tau h+h^2) \le \tau h^{\frac{3}{4}}+h^{\frac{7}{4}}. \end{aligned}$$
(B.7)

This completes the proof of (3.53) for \(m=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Wang, J. & Wang, K. Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media. J Sci Comput 83, 25 (2020). https://doi.org/10.1007/s10915-020-01194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01194-0

Keywords

Navigation