Skip to main content
Log in

Ruthenium(II)-2, 2′-bipyridine/1, 10-phenanthroline complexes incorporating (E)-2-(((5-((4-methoxyphenyl)ethynyl)pyridin-2-yl)imino)methyl)-4-((4-nitro phenyl)ethynyl)phenol as a ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new series of hexa-coordinated Ru(II) complexes of the type [Ru(L)(phen)2]X (1ad) and [Ru(L)(bipy)2]X (2ad) (where phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, X = NO3, BF4, ClO4, PF6) have been prepared by the reaction of (E)-2-(((5-((4-methoxyphenyl)ethynyl)pyridin-2-yl)imino)methyl)-4-((4-nitrophenyl)ethynyl)phenol (L) with [Ru(phen)2]Cl2·2H2O and [Ru(bipy)2]Cl2·2H2O. The complexes were characterized by physico-chemical and spectroscopic methods. All complexes are 1:1 conducting and diamagnetic in nature. In acetonitrile solution, the complexes displayed one reversible Ru(II)–Ru(III) oxidation couple and one irreversible Ru(III)–Ru(IV) oxidation and are sensitive to π-acidic character of phen and bipy ligands. The complexes show room-temperature luminescence originated from the lowest energy metal-to-ligand charge transfer excited state and are sensitive to difference in size of the counter anions. All the complexes displayed second harmonic generation by Kurtz-powder technique indicating their potential for the application as a useful NLO material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sprintschnik G, Sprintschnik HW, Kirsch PP, Whitten DGJ (1976) J Am Chem Soc 98:2337–2338

    Article  CAS  Google Scholar 

  2. Gilbert JA, Eggleston DS, Murphy WR Jr, Gaselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107:3855–3864

    Article  CAS  Google Scholar 

  3. Ellis CD, Gilbert JA, Murphy WR Jr, Meyer TJ (1983) J Am Chem Soc 105:4842–4843

    Article  CAS  Google Scholar 

  4. Tanaka K, Morimoto M, Tanaka T (1981) Inorg Chim Acta 56:L61–L63

    Article  CAS  Google Scholar 

  5. Suzuki T, Kuchiyama T, Kishi S, Kaizaki S, Takagi HD, Kato M (2003) Inorg Chem 42:785–795

    Article  CAS  Google Scholar 

  6. Benniston AC, Mackie PR, Farruga LJ, Smith G, Teat SJ, McLean AJ (2001) New J Chem 25:458–464

    Article  CAS  Google Scholar 

  7. Keerthi KD, Santra BK, Lahiri GK (1998) Polyhedron 17:1387–1396

    Article  CAS  Google Scholar 

  8. Yanagida M, Singh LP, Sayama K, Hara K, Katoh R, Islam A, Sugihara H, Arakawa H, Nazeeruddin MK, Grätzel M (2000) J Chem Soc Dalton Trans 16:2817–2822

    Article  Google Scholar 

  9. Elvington M, Brown J, Arachchige SM, Brewer KJ (2007) J Am Chem Soc 12935:10644–10645

    Article  Google Scholar 

  10. Rani-Beeram S, Meyer K, McCrate A, Hong Y, Nielsen M, Swavey S (2008) Inorg Chem 47:11278–11283

    Article  CAS  Google Scholar 

  11. Lundrigan T, Jackson CJM, Uddin MI, Tucker LA, Al-Sheikh AA, Linden A, Cameron TS, Thompson A (2012) Can J Chem 90:693–700

    Article  CAS  Google Scholar 

  12. Das S, Saha D, Bhaumik C, Dutta S, Baitalik S (2010) Dalton Trans 39:4162–4169

    Article  CAS  Google Scholar 

  13. Gong L, Mulcahy SP, Harms K, Meggers E (2009) J Am Chem Soc 131:9602–9603

    Article  CAS  Google Scholar 

  14. Chen LA, Ma J, Celik M, Yu HL, Cao Z, Frenking G, Gong L, Meggers E (2012) Chem Asian J 7:2523–2526

    Article  CAS  Google Scholar 

  15. Gong L, Mulcahy SP, Devarajan D, Harms K, Frenking G, Meggers E (2010) Inorg Chem 49:7692–7699

    Article  CAS  Google Scholar 

  16. Johnson EC, Sullivan BP, Salmon DJ, Adeyemi SA, Meyer T (1978) J Inorg Chem 17:2211–2215

    Article  CAS  Google Scholar 

  17. Sullivan BP, Salmon DJ, Meyer T (1978) J Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  18. Kuo K-L, Huang CC, Lin YC (2008) Dalton Trans 29:3889–3898

    Article  Google Scholar 

  19. Lolage SR, Pawal SB, Chavan SS (2017) Chem Sel 2:8052–8058

    CAS  Google Scholar 

  20. Hariram R, Santra BK, Lahiri GK (1997) J Organomet Chem 540:155–163

    Article  CAS  Google Scholar 

  21. Kovacic JE (1967) SpectrochimActa 23:183–187

    Article  Google Scholar 

  22. Sitthuraj K, Manisekar M, Periasamy V, Santhanam S (2008) Trans Met Chem 33:643–648

    Article  Google Scholar 

  23. Nakamato K (1971) Wiley Interscience, New York

  24. Liu C, Yu S, Li D, Liao Z, Sun X, Xu H (2002) Inorg Chem 41:913–922

    Article  CAS  Google Scholar 

  25. Fortin D, Drouin M, Turcotte M, Harvey PD (1997) J Am Chem Soc 119:531–541

    Article  CAS  Google Scholar 

  26. Shi H-Y, Huang YL, Sun JK, Jiang JJ, Luo ZX, Ling HT, Lam CK, Chao HY (2015) RSC Adv 5:89669–89681

    Article  CAS  Google Scholar 

  27. Pesce B (1965) Academic Press, New York 174

  28. Alsfasser R, Eldik RV (1996) Inorg Chem 35:628–636

    Article  CAS  Google Scholar 

  29. Bharath A, Santra BK, Munshi P, Lahiri GK (1998) J Chem Soc Dalton Trans 16:2643–2650

    Article  Google Scholar 

  30. Bhattacharya S (1993) Polyhedron 12:235–239

    Article  CAS  Google Scholar 

  31. Lolage SR, Pawal SB, Chavan SS (2017) Opt Mater 67:162–171

    Article  Google Scholar 

  32. Wang ZM, Shen SM, Shen XY, Xu YQ, Jia AQ, Zhang QF (2016) J Coord Chem 69:851–861

    Article  CAS  Google Scholar 

  33. Mondal B, Chakraborty S, Munshi P, Walwalkar MG, Lahiri GK (2000) Dalton Trans 2000:2327–2335

    Article  Google Scholar 

  34. Calvert JM, Caspar JV, Binstead RA, Westmoreland TD, Meyer TJ (1982) J Am Chem Soc 104:6620–6627

    Article  CAS  Google Scholar 

  35. Gorelsky SI, Dodsworth ES, Lever ABP, Vlcek AA (1998) Coord Chem Rev 174:469–496

    Article  CAS  Google Scholar 

  36. Gorelsky SI, Lever ABP (2000) Coord Chem Rev 208:153–167

    Article  Google Scholar 

  37. Wang CJ, Xu WF, Tong BH, Jia AQ, Zhang QF (2017) J Coord Chem 70:1617–1631

    Article  CAS  Google Scholar 

  38. Roy S, Sarkar BN, Bhar K, Satapathi S, Mitra P, Ghosh BK (2012) J Mol Struct 1037:160–169

    Article  Google Scholar 

  39. Mohite SS, Patil-Deshmukh AB, Chavan SS (2019) J Mol Stru 1176:386–393

    Article  CAS  Google Scholar 

  40. Zhu Y, Ma Y, Zhu J (2013) J Lumin 137:198–203

    Article  CAS  Google Scholar 

  41. Coe BJ (2006) Acc Chem Res 39:383–393

    Article  CAS  Google Scholar 

  42. Yager KG, Barrett CJ (2006) J Photochem Photobio A Chem 182:250–261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (ABP-D) is thankful to UGC-BSR-SRF, New Delhi, India, for awarding UGC research fellowship in science for meritorious students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Chavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil-Deshmukh, A.B., Mohite, S.S. & Chavan, S.S. Ruthenium(II)-2, 2′-bipyridine/1, 10-phenanthroline complexes incorporating (E)-2-(((5-((4-methoxyphenyl)ethynyl)pyridin-2-yl)imino)methyl)-4-((4-nitro phenyl)ethynyl)phenol as a ligand. Transit Met Chem 45, 333–342 (2020). https://doi.org/10.1007/s11243-020-00384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00384-x

Navigation