Skip to main content
Log in

In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The bainitic transformation of the steels with different mass fractions of N, ∼0.002% and 0.021%, was observed in situ by using high-temperature metalloscope. Micrometer- and nanometer-sized aluminum nitride (AlN) particles were found in the steel with 0.021% N. Grain boundaries, the interior of the grains, and AlN particles were used as initial nucleation sites of bainitic ferrite, and bainitic ferrite subunits served as new nucleation sites to induce secondary nucleation. The lengthening rate of bainitic ferrite varied at different nucleation sites, which was controlled by the repeated nucleation and growth of bainitic subunits. The AlN particles not only provided several nucleation sites, but also increased the autocatalytic effect on the transformation, further shortening the incubation period, promoting the bainitic transformation, and refining the bainitic microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zhang, T.S. Wang, Y.H. Wang, J. Yang, and F.C. Zhang, Preparation of nanostructured bainite in medium-carbon alloy steel, Mater. Sci. Eng. A, 568(2013), p. 123.

    Article  CAS  Google Scholar 

  2. J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, High-cycle bending fatigue behavior of nanostructured bainitic steel, Scripta Mater., 66(2012), No. 6, p. 363.

    Article  CAS  Google Scholar 

  3. W. Solano-Alvare, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of nanostructured bainitic steel under rolling contact fatigue, Mater. Sci. Eng. A, 617(2014), p. 156.

    Article  Google Scholar 

  4. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite, ISIJ Int., 43(2003), No. 11, p. 1821.

    Article  CAS  Google Scholar 

  5. M. Soliman and H. Palkowski, Development of the low temperature bainite, Arch. Civ. Mech. Eng., 16(2016), No. 3, p. 403.

    Article  Google Scholar 

  6. H. Huang, M.Y. Sherif, and P.E.J. Rivera-Díaz-del-Castillo, Combinatorial optimization of carbide-free bainitic nanostructures, Acta Mater., 61(2013), No. 5, p. 1639.

    Article  CAS  Google Scholar 

  7. T. Sourmail and V. Smanio, Low temperature kinetics of bainite formation in high carbon steels, Acta Mater., 61(2013), No. 7, p. 2639.

    Article  CAS  Google Scholar 

  8. M. Enomoto, Nucleation of phase transformations at intragranular inclusions in steel, Met. Mater., 4(1998), No. 2, p. 115.

    Article  CAS  Google Scholar 

  9. S.D. Catteau, H.P. Van Landeghem, J. Teixeira, J. Dulcy, M. Dehmas, S. Denis, A. Redjaïmia, and M. Courteaux, Carbon and nitrogen effects on microstructure and kinetics associated with bainitic transformation in a low-alloyed steel, J. Alloys Compd., 658(2016), p. 832.

    Article  CAS  Google Scholar 

  10. Y. Luo, W. Yang, Q. Ren, Z.Y. Hu, M. Li, and L.F. Zhang, Evolution of non-metallic inclusions and precipitates in oriented silicon steel, Metall. Mater. Trans. B, 49(2018), No. 3, p. 926.

    Article  CAS  Google Scholar 

  11. S.F. Medina, M. Gómez, and L. Rancel, Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel, Scripta Mater., 58(2008), No. 2, p. 1110.

    Article  CAS  Google Scholar 

  12. M. Sennour and C. Esnouf, Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel, Acta Mater., 51(2003), No. 4, p. 943.

    Article  CAS  Google Scholar 

  13. N.E.V. Díaz, S.S. Hosmani, R.E. Schacherl, and E.J. Mittemeijer, Nitride precipitation and coarsening in Fe−2.23 at.% V alloys: XRD and (HR)TEM study of coherent and incoherent diffraction effects caused by misfitting nitride precipitates in a ferrite matrix, Acta Mater., 56(2008), No. 16, p. 4137.

    Article  Google Scholar 

  14. J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, Microstructure and mechanical properties of high-carbon Si-Al-rich steel by low-temperature austempering, Mater. Des., 35(2012), p. 170.

    Article  CAS  Google Scholar 

  15. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, and Z.S. Yan, Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time, Mater. Des., 36(2012), p. 220.

    Article  CAS  Google Scholar 

  16. D. Zhang, H. Terasaki, and Y.I. Komizo, In situ observation of phase transformation in Fe−0.15C binary alloy, J. Alloys Compd., 484(2009), No. 1–2, p. 929.

    Article  CAS  Google Scholar 

  17. J.W. Elmer, J. Wong, and T. Ressler, In-sttu observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved X-ray diffraction, Scripta Mater., 43(2000), p. 751.

    Article  CAS  Google Scholar 

  18. M.K. Kang, M.X. Zhang, and M. Zhu, In situ observation of bainite growth during isothermal holding, Acta Mater., 54(2006), No. 8, p. 2121.

    Article  CAS  Google Scholar 

  19. J. Pak, D.W. Suh, and H.K.D.H. Bhadeshia, Displacive phase transformation and surface effects associated with confocal laser scanning microscopy, Metall. Mater. Trans. A, 43(2012), No. 12, p. 4520.

    Article  CAS  Google Scholar 

  20. G. Xu, F. Liu, L. Wang, and H.J. Hu, A new approach to quantitative analysis of bainitic transformation in a superbainite steel, Scripta Mater., 68(2013), No. 11, p. 833.

    Article  CAS  Google Scholar 

  21. J. Tian, G. Xu, L. Wang, M.X. Zhou, and H.J. Hu, In situ observation of the lengthening rate of bainite sheaves during continuous cooling process in a Fe-C-Mn-Si superbainitic steel, Trans. Indian Inst. Met., 71(2018), No. 1, p. 185.

    Article  CAS  Google Scholar 

  22. Y. Wan, W.Q. Chen, and S.J. Wu, Effect of the hot charging temperature of slabs on AlN and MnS precipitation behavior in non-oriented silicon steel, J. Univ. Sci. Technol. Beijing, 35(2014), No. 8, p. 1007.

    Google Scholar 

  23. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock, Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scripta Mater., 50(2004), No. 12, p. 1445.

    Article  CAS  Google Scholar 

  24. S.M.C.V. Bohemen and J. Sietsma, The kinetics of bainite and martensite formation in steels during cooling, Mater. Sci. Eng. A, 527(2010), No. 24–25, p. 6672.

    Article  Google Scholar 

  25. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Bainite formation kinetics in steels and the dynamic nature of the autocatalytic nucleation process, Scripta Mater., 140(2017), p. 82.

    Article  CAS  Google Scholar 

  26. J. Kang, F.C. Zhang, X.W. Yang, B. Lv, and K.M. Wu, Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel, Mater. Sci. Eng. A, 686(2017), p. 150.

    Article  CAS  Google Scholar 

  27. L.C. Chang and H.K.D.H. Bhadeshia, Austenite films in bainitic microstructures, Mater. Sci. Technol., 11(1995), No. 9, p. 874.

    Article  CAS  Google Scholar 

  28. S. Zajac, V. Schwinn, and K.H. Tacke, Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels, Mater. Sci. Forum, 500–501(2005), p. 387.

    Article  Google Scholar 

  29. R.T.V. Tol, L. Zhao, and J. Sietsma, Kinetics of austenite decomposition in manganese-based steel, Acta Mater., 64(2014), p. 33.

    Article  Google Scholar 

  30. H.K.D.H. Bhadeshia, Bainite: Overall transformation kinetics, J. Phys. Colloq., 43(1982), p. C4443.

    Google Scholar 

  31. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels, Acta Mater., 105(2016), p. 155.

    Article  CAS  Google Scholar 

  32. X.J. Zhao, Z.N. Yang, F.C. Zhang, X.Y. Long, and C. Chen, Acceleration of bainitic transformation by introducing AlN in medium carbon steel, Mater. Sci. Technol., 35(2019), No. 2, p. 147.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Project of Hebei Provincial Department of Education (No. QN2018144) and the National Natural Science Foundation of China (No. 51831008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-nan Yang or Fu-cheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Xj., Yang, Zn. & Zhang, Fc. In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel. Int J Miner Metall Mater 27, 620–629 (2020). https://doi.org/10.1007/s12613-019-1911-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1911-9

Keywords

Navigation