Skip to main content
Log in

Knee laxity, lateral meniscus tear and distal femur morphology influence pivot shift test grade in ACL injury patients

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Although several factors have been considered to be associated with pivot shift test grade in ACL injured patients, a conclusion regarding which factors contribute to the pivot shift test grade has not been reached. The purpose of this study was to identify factors associated with preoperative pivot shift test grade.

Methods

Three hundred and sixty-six consecutive patients who underwent ACL reconstruction in our hospital were enrolled in the study. Patients were divided into two groups on the basis of preoperative pivot shift test grade (Mild: grade 0–3, Severe: grade 4–6). First, 13 independent variables (age, gender, period from injury to surgery, hyperextension, KT measurement, contralateral side pivot shift test grade, medial and lateral tibial slope, lateral condyle length, lateral condyle height, distal femoral condyle offset, medial and lateral meniscus tear) were analyzed by one-way ANOVA and Chi-squared test. Binary Logistic regression was then performed based on the results of univariate analyses (independent variables of p < 0.2 were included).

Results

Hyperextension, lateral meniscus tear, contralateral side pivot shift test grade, distal femoral condyle offset and KT measurement were identified as risk factors for preoperative pivot shift grade via logistic regression analysis.

Conclusion

The current study revealed that hyperextension, lateral meniscus tear, contralateral side pivot shift test grade, distal femoral condyle offset and anterior instability were associated with preoperative pivot shift grade. Patients with above factors that cannot be modified during surgery may need special consideration when ACL reconstruction is performed, as greater preoperative pivot shift has been proven to be a risk factor for residual pivot shift after ACL reconstruction.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ali AM, Pillai JK, Gulati V, Gibbons CER, Roberton BJ (2018) Hyperextension injuries of the knee: do patterns of bone bruising predict soft tissue injury? Skeletal Radiol 47:173–179

    Article  CAS  Google Scholar 

  2. Ayeni OR, Chahal M, Tran MN, Sprague S (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20:767–777

    Article  Google Scholar 

  3. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18:1269–1276

    Article  Google Scholar 

  4. Branch T, Stinton S, Sharma A, Lavoie F, Guier C, Neyret P (2017) The impact of bone morphology on the outcome of the pivot shift test: a cohort study. BMC Musculoskelet Disord 18:463

    Article  Google Scholar 

  5. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899

    Article  Google Scholar 

  6. Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G (2019) Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc 27:564–572

    Article  Google Scholar 

  7. Devitt BM, O'Sullivan R, Feller JA, Lash N, Porter TJ, Webster KE et al (2017) MRI is not reliable in diagnosing of concomitant anterolateral ligament and anterior cruciate ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc 25:1345–1351

    Article  Google Scholar 

  8. Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Jt Surg Am 61:710–714

    Article  CAS  Google Scholar 

  9. Fu FH, Kowalczuk M (2018) Structures of the anterolateral knee: why all the confusion? Clin Sports Med 37:17–18

    Google Scholar 

  10. Getgood AMJ, Bryant DM, Litchfield R, Heard M, McCormack RG, Rezansoff A et al (2020) Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the STABILITY Study Randomized Clinical Trial. Am J Sports Med 48:285–297

    Article  Google Scholar 

  11. Grassi A, Signorelli C, Urrizola F, Raggi F, Macchiarola L, Bonanzinga T et al (2018) Anatomical features of tibia and femur: Influence on laxity in the anterior cruciate ligament deficient knee. Knee 25:577–587

    Article  Google Scholar 

  12. Grassi A, Zicaro JP, Costa-Paz M, Samuelsson K, Wilson A, Zaffagnini S et al (2020) Good mid-term outcomes and low rates of residual rotatory laxity, complications and failures after revision anterior cruciate ligament reconstruction (ACL) and lateral extra-articular tenodesis (LET). Knee Surg Sports Traumatol Arthrosc 28:418–431

    Article  Google Scholar 

  13. Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    Article  CAS  Google Scholar 

  14. Hoshino Y, Miyaji N, Nishida K, Nishizawa Y, Araki D, Kanzaki N et al (2019) The concomitant lateral meniscus injury increased the pivot shift in the anterior cruciate ligament-injured knee. Knee Surg Sports Traumatol Arthrosc 27:646–651

    Article  Google Scholar 

  15. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072

    Article  Google Scholar 

  16. Huser LE, Noyes FR, Jurgensmeier D, Levy MS (2017) Anterolateral ligament and iliotibial band control of rotational stability in the anterior cruciate ligament-intact knee: defined by tibiofemoral compartment translations and rotations. Arthroscopy 33:595–604

    Article  Google Scholar 

  17. Kanakamedala AC, Burnham JM, Pfeiffer TR, Herbst E, Kowalczuk M, Popchak A et al (2018) Lateral femoral notch depth is not associated with increased rotatory instability in ACL-injured knees: a quantitative pivot shift analysis. Knee Surg Sports Traumatol Arthrosc 26:1399–1405

    Article  Google Scholar 

  18. Katakura M, Horie M, Watanabe T, Katagiri H, Otabe K, Ohara T et al (2019) Effect of meniscus repair on pivot-shift during anterior cruciate ligament reconstruction: objective evaluation using triaxial accelerometer. Knee 26:124–131

    Article  Google Scholar 

  19. Kizilgoz V, Sivrioglu AK, Aydin H, Cetin T, Ulusoy GR (2018) Assessment of the anterolateral ligament of the knee by 1.5 T magnetic resonance imaging. J Int Med Res 46:1486–1495

    Article  Google Scholar 

  20. Koga H, Muneta T, Yagishita K, Watanabe T, Mochizuki T, Horie M et al (2014) Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2811–2820

    Article  Google Scholar 

  21. Magnussen RA, Reinke EK, Huston LJ, Hewett TE, Spindler KP (2016) Effect of high-grade preoperative knee laxity on anterior cruciate ligament reconstruction outcomes. Am J Sports Med 44:3077–3082

    Article  Google Scholar 

  22. Magnussen RA, Reinke EK, Huston LJ, Hewett TE, Spindler KP (2016) Factors associated with high-grade Lachman, pivot shift, and anterior drawer at the time of anterior cruciate ligament reconstruction. Arthroscopy 32:1080–1085

    Article  Google Scholar 

  23. Marshall T, Oak SR, Subhas N, Polster J, Winalski C, Spindler KP (2018) Can the anterolateral ligament be reliably identified in anterior cruciate ligament-intact and anterior cruciate ligament-injured knees on 3-T magnetic resonance imaging? Orthop J Sports Med 6:2325967118796452

    Article  Google Scholar 

  24. Minami T, Koga H, Sekiya I, Watanabe T, Horie M, Katagiri H et al (2018) Posteriorly inserted anterior cruciate ligament in knees with discoid lateral meniscus corresponding to bony morphological characteristics of femoral lateral condyle. J Orthop Sci 23:350–355

    Article  Google Scholar 

  25. Minami T, Muneta T, Sekiya I, Watanabe T, Mochizuki T, Horie M et al (2018) Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 26:1174–1181

    PubMed  Google Scholar 

  26. Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ et al (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 20:870–877

    Article  CAS  Google Scholar 

  27. Musahl V, Kopf S, Rabuck S, Becker R, van der Merwe W, Zaffagnini S et al (2012) Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc 20:793–800

    Article  Google Scholar 

  28. Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y et al (2016) The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med 44:3126–3131

    Article  Google Scholar 

  29. Nielsen ET, Stentz-Olesen K, de Raedt S, Jørgensen PB, Sørensen OG, Kaptein B et al (2018) Influence of the anterolateral ligament on knee laxity: a biomechanical cadaveric study measuring knee kinematics in 6 degrees of freedom using dynamic radiostereometric analysis. Orthop J Sports Med 6:2325967118789699

    Article  Google Scholar 

  30. Pfeiffer TR, Burnham JM, Kanakamedala AC, Hughes JD, Zlotnicki J, Popchak A et al (2019) Distal femur morphology affects rotatory knee instability in patients with anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc 27:1514–1519

    Article  Google Scholar 

  31. Saita Y, Schoenhuber H, Thiebat G, Ravasio G, Pozzoni R, Panzeri A et al (2019) Knee hyperextension and a small lateral condyle are associated with greater quantified antero-lateral rotatory instability in the patients with a complete anterior cruciate ligament (ACL) rupture. Knee Surg Sports Traumatol Arthrosc 27:868–874

    Article  Google Scholar 

  32. Saithna A, Daggett M, Helito CP, Monaco E, Franck F, Vieira TD et al (2020) Clinical Results of Combined ACL and Anterolateral Ligament Reconstruction: A Narrative Review from the SANTI Study Group. J Knee Surg. https://doi.org/10.1055/s-0040-1701220

    Article  PubMed  Google Scholar 

  33. Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC et al (2015) Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 43:905–911

    Article  Google Scholar 

  34. Sonnery-Cottet B, Saithna A, Cavalier M, Kajetanek C, Temponi EF, Daggett M et al (2017) Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years: a prospective comparative study of 502 patients from the SANTI Study Group. Am J Sports Med 45:1547–1557

    Article  Google Scholar 

  35. Sturnick DR, Van Gorder R, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW et al (2014) Tibial articular cartilage and meniscus geometries combine to influence female risk of anterior cruciate ligament injury. J Orthop Res 32:1487–1494

    Article  Google Scholar 

  36. Tan SH, Lau BP, Khin LW, Lingaraj K (2016) The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions: a systematic review and meta-analysis. Am J Sports Med 44:242–254

    Article  Google Scholar 

  37. Tanaka M, Vyas D, Moloney G, Bedi A, Pearle AD, Musahl V (2012) What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc 20:737–742

    Article  CAS  Google Scholar 

  38. Ueki H, Nakagawa Y, Ohara T, Watanabe T, Horie M, Katagiri H et al (2018) Risk factors for residual pivot shift after anterior cruciate ligament reconstruction: data from the MAKS group. Knee Surg Sports Traumatol Arthrosc 26:3724–3730

    Article  Google Scholar 

  39. Yamamoto Y, Tsuda E, Maeda S, Naraoka T, Kimura Y, Chiba D et al (2018) Greater laxity in the anterior cruciate ligament-injured knee carries a higher risk of postreconstruction pivot shift: intraoperative measurements with a navigation system. Am J Sports Med 46:2859–2864

    Article  Google Scholar 

Download references

Acknowledgements

WC thanks the supporting from Takeda Science Foundation for oversea study. The authors thank Hiroko Ueki MD, Kei Inomata MD, and Masayo Tsukamoto for their assistance in collecting data.

Funding

This study received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

WC analyzed the data and drafted the manuscript. YN designed the initial plan, conducted the study and edited the manuscript. HKA, KO, TO, MS, YK, TH and IS collected the data. AY analyzed the data. HKO designed the initial plan, conducted the study and completed the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hideyuki Koga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board in Tokyo Medical and Dental University (research protocol identification number: 2000-1146).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Nakagawa, Y., Katagiri, H. et al. Knee laxity, lateral meniscus tear and distal femur morphology influence pivot shift test grade in ACL injury patients. Knee Surg Sports Traumatol Arthrosc 29, 633–640 (2021). https://doi.org/10.1007/s00167-020-05994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-05994-7

Keywords

Navigation