Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Delocalization boosts charge separation in organic solar cells

Abstract

Organic solar cells (OSCs) utilizing π-conjugated polymers have attracted widespread interest over the past three decades because of their potential advantages, including low weight, thin film flexibility, and low-cost manufacturing. However, their power conversion efficiency (PCE) has been far below that of inorganic analogs. Geminate recombination of charge transfer excitons is a major loss process in OSCs. This paper reviews our recent progress in using transient absorption spectroscopy to understand geminate recombination in bulk heterojunction OSCs, including the impact of polymer crystallinity on charge generation and dissociation mechanisms in nonfullerene acceptor-based OSCs. The first example of a high PCE with a small photon energy loss is also presented. The importance of delocalization of the charge wave function to suppress geminate recombination is highlighted by this focus review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clarke TM, Durrant JR. Charge photogeneration in organic solar cells. Chem Rev. 2010;110:6736–67.

    CAS  PubMed  Google Scholar 

  2. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent advances in bulk heterojunction polymer solar cells. Chem Rev. 2015;115:12666–731.

    CAS  PubMed  Google Scholar 

  3. Inganäs O. Organic photovoltaics over three decades. Adv Mater. 2018;30:1800388.

    Google Scholar 

  4. Hou J, Inganäs O, Friend RH, Gao F. Organic solar cells based on non-fullerene acceptors. Nat Mater. 2018;17:119–28.

    CAS  PubMed  Google Scholar 

  5. Guo JM, Ohkita H, Benten H, Ito S. Charge generation and recombination dynamics in poly(3-hexylthiophene)/fullerene blend films with different regioregularities and morphologies. J Am Chem Soc. 2010;132:6154–64.

    CAS  PubMed  Google Scholar 

  6. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, et al. Efficient photodiodes from interpenetrating polymer networks. Nature. 1995;376:498–500.

    CAS  Google Scholar 

  7. Zhan C, Zhang X, Yao J. New advances in non-fullerene acceptor based organic solar cells. RSC Adv. 2015;5:93002–26.

    CAS  Google Scholar 

  8. McAfee SM, Topple JM, Hill IG, Welch GC. Key components to the recent performance increases of solution processed non-fullerene small molecule acceptors. J Mater Chem A. 2015;3:16393–408.

    CAS  Google Scholar 

  9. McNeill CR, Westenhoff S, Groves C, Friend RH, Greenham NC. Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: balancing charge generation and separation. J Phys Chem C. 2007;111:19153–60.

    CAS  Google Scholar 

  10. Westenhoff S, Howard IA, Hodgkiss JM, Kirov KR, Bronstein HA, Williams CK, et al. Charge recombination in organic photovoltaic devices with high open-circuit voltages. J Am Chem Soc. 2008;130:13653–8.

    CAS  PubMed  Google Scholar 

  11. Hodgkiss JM, Campbell AR, Marsh RA, Rao A, Albert-Seifried S, Friend RH. Subnanosecond geminate charge recombination in polymer-polymer photovoltaic devices. Phys Rev Lett. 2010;104:177701.

    PubMed  Google Scholar 

  12. Moore JR, Albert-Seifried S, Rao A, Massip S, Watts B, Morgan DJ, et al. Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: device physics, photophysics and morphology. Adv Energy Mater. 2011;1:230–40.

    CAS  Google Scholar 

  13. Schubert M, Collins BA, Mangold H, Howard IA, Schindler W, Vandewal K, et al. Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells. Adv Funct Mater. 2014;24:4068–81.

    CAS  Google Scholar 

  14. Gehrig DW, Roland S, Howard IA, Kamm V, Mangold H, Neher D, et al. Efficiency-limiting processes in low-bandgap polymer:perylene diimide photovoltaic blends. J Phys Chem C. 2014;118:20077–85.

    CAS  Google Scholar 

  15. Zhang GY, Zhao JB, Chow PCY, Jiang K, Zhang JQ, Zhu ZL, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev. 2018;118:3447–507.

    CAS  PubMed  Google Scholar 

  16. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev. 2019;48:1596–625.

    CAS  PubMed  Google Scholar 

  17. Yuan J, Zhang YQ, Zhou LY, Zhang GC, Yip HL, Lau TK, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 2019;3:1140–51.

    CAS  Google Scholar 

  18. Lin YB, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, et al. 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Adv Mater. 2019;31:9.

    Google Scholar 

  19. Cui Y, Yao HF, Zhang JQ, Zhang T, Wang YM, Hong L, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun. 2019;10:8.

    Google Scholar 

  20. Menke SM, Ran NA, Bazan GC, Friend RH. Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule. 2018;2:25–35.

    CAS  Google Scholar 

  21. Li WW, Hendriks KH, Furlan A, Wienk MM, Janssen RAJ. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J Am Chem Soc. 2015;137:2231–4.

    CAS  PubMed  Google Scholar 

  22. Tamai Y, Ohkita H, Shimada J, Benten H, Ito S, Yamanaka S, et al. Dynamical excimer formation in rigid carbazolophane via charge transfer state. J Phys Chem A. 2013;117:7776–85.

    CAS  PubMed  Google Scholar 

  23. Tamai Y, Ohkita H, Benten H, Ito S. Singlet fission in poly(9,9′-di-n-octylfluorene) films. J Phys Chem C. 2013;117:10277–84.

    CAS  Google Scholar 

  24. Tamai Y, Tsuda K, Ohkita H, Benten H, Ito S. Charge-carrier generation in organic solar cells using crystalline donor polymers. Phys Chem Chem Phys. 2014;16:20338–46.

    CAS  PubMed  Google Scholar 

  25. Tamai Y, Ohkita H, Benten H, Ito S. Triplet exciton dynamics in fluorene-amine copolymer films. Chem Mater. 2014;26:2733–42.

    CAS  Google Scholar 

  26. Tamai Y, Matsuura Y, Ohkita H, Benten H, Ito S. One-dimensional singlet exciton diffusion in poly(3-hexylthiophene) crystalline domains. J Phys Chem Lett. 2014;5:399–403.

    CAS  PubMed  Google Scholar 

  27. Tamai Y, Ohkita H, Benten H, Ito S. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J Phys Chem Lett. 2015;6:3417–28.

    CAS  PubMed  Google Scholar 

  28. Kawashima K, Tamai Y, Ohkita H, Osaka I, Takimiya K. High-efficiency polymer solar cells with small photon energy loss. Nat Commun. 2015;6:10085.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kasai Y, Tamai Y, Ohkita H, Benten H, Ito S. Ultrafast singlet fission in a push-pull low-bandgap polymer film. J Am Chem Soc. 2015;137:15980–3.

    CAS  PubMed  Google Scholar 

  30. Tamai Y, Ohkita H, Namatame M, Marumoto K, Shimomura S, Yamanari T, et al. Light-induced degradation mechanism in poly(3-hexylthiophene)/fullerene blend solar cells. Adv Energy Mater. 2016;6:1600171.

    Google Scholar 

  31. Tamai Y, Fan Y, Kim VO, Ziabrev K, Rao A, Barlow S, et al. Ultrafast long-range charge separation in nonfullerene organic solar cells. ACS Nano. 2017;11:12473–81.

    CAS  PubMed  Google Scholar 

  32. Umeyama T, Igarashi K, Sasada D, Tamai Y, Ishida K, Koganezawa T, et al. Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chem Sci. 2020;11:3250–7.

    CAS  Google Scholar 

  33. Mauer R, Howard IA, Laquai F. Effect of nongeminate recombination on fill factor in polythiophene/methanofullerene organic solar cells. J Phys Chem Lett. 2010;1:3500–5.

    CAS  Google Scholar 

  34. Howard IA, Mauer R, Meister M, Laquai F. Effect of morphology on ultrafast free carrier generation in polythiophene:fullerene organic solar cells. J Am Chem Soc. 2010;132:14866–76.

    CAS  PubMed  Google Scholar 

  35. Shoaee S, Subramaniyan S, Xin H, Keiderling C, Tuladhar PS, Jamieson F, et al. Charge photogeneration for a series of thiazolo-thiazole donor polymers blended with the fullerene electron acceptors PCBM and ICBA. Adv Funct Mater. 2013;23:3286–98.

    CAS  Google Scholar 

  36. Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science. 2014;343:512–6.

    PubMed  Google Scholar 

  37. Dimitrov SD, Durrant JR. Materials design considerations for charge generation in organic solar cells. Chem Mater. 2014;26:616–30.

    CAS  Google Scholar 

  38. Etzold F, Howard IA, Forler N, Cho DM, Meister M, Mangold H, et al. The effect of solvent additives on morphology and excited-state dynamics in PCPDTBT:PCBM photovoltaic blends. J Am Chem Soc. 2012;134:10569–83.

    CAS  PubMed  Google Scholar 

  39. Motaung DE, Malgas GF, Arendse CJ. Correlation between the morphology and photo-physical properties of P3HT:Fullerene blends. J Mater Sci. 2010;45:3276–83.

    CAS  Google Scholar 

  40. Salleo A, Kline RJ, DeLongchamp DM, Chabinyc ML. Microstructural characterization and charge transport in thin films of conjugated polymers. Adv Mater. 2010;22:3812–38.

    CAS  PubMed  Google Scholar 

  41. Chen H-Y, Hou J, Hayden AE, Yang H, Houk KN, Yang Y. Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv Mater. 2010;22:371–5.

    CAS  PubMed  Google Scholar 

  42. Chen D, Nakahara A, Wei D, Nordlund D, Russell TP. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. Nano Lett. 2011;11:561–7.

    CAS  PubMed  Google Scholar 

  43. Agostinelli T, Ferenczi TAM, Pires E, Foster S, Maurano A, Müller C, et al. The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:fullerene solar cells. J Polym Sci B Polym Phys. 2011;49:717–24.

    CAS  Google Scholar 

  44. Yamamoto S, Ohkita H, Benten H, Ito S. Role of interfacial charge transfer state in charge generation and recombination in low-bandgap polymer solar cell. J Phys Chem C. 2012;116:14804–10.

    CAS  Google Scholar 

  45. Guilbert AAY, Frost JM, Agostinelli T, Pires E, Lilliu S, Macdonald JE, et al. Influence of bridging atom and side chains on the structure and crystallinity of cyclopentadithiophene–benzothiadiazole polymers. Chem Mater. 2014;26:1226–33.

    CAS  Google Scholar 

  46. Mayer AC, Toney MF, Scully SR, Rivnay J, Brabec CJ, Scharber M, et al. Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells. Adv Funct Mater. 2009;19:1173–9.

    CAS  Google Scholar 

  47. Cates NC, Gysel R, Beiley Z, Miller CE, Toney MF, Heeney M, et al. Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. Nano Lett. 2009;9:4153–7.

    CAS  PubMed  Google Scholar 

  48. Hammond MR, Kline RJ, Herzing AA, Richter LJ, Germack DS, Ro H-W, et al. Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. ACS Nano. 2011;5:8248–57.

    CAS  PubMed  Google Scholar 

  49. Liu F, Gu Y, Jung JW, Jo WH, Russell TP. On the morphology of polymer-based photovoltaics. J Polym Sci B Polym Phys. 2012;50:1018–44.

    CAS  Google Scholar 

  50. Sweetnam S, Graham KR, Ndjawa GON, Heumueller T, Bartelt JA, Burke TM, et al. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J Am Chem Soc. 2014;136:14078–88.

    CAS  PubMed  Google Scholar 

  51. Jamieson FC, Agostinelli T, Azimi H, Nelson J, Durrant JR. Field-independent charge photogeneration in PCPDTBT/PC70BM solar cells. J Phys Chem Lett. 2010;1:3306–10.

    CAS  Google Scholar 

  52. Ie Y, Morikawa K, Zajaczkowski W, Pisula W, Kotadiya NB, Wetzelaer G-JAH, et al. Enhanced photovoltaic performance of amorphous donor–acceptor copolymers based on fluorine-substituted benzodioxocyclohexene-annelated thiophene. Adv Energy Mater. 2018;8:1702506.

    Google Scholar 

  53. Shivanna R, Shoaee S, Dimitrov S, Kandappa SK, Rajaram S, Durrant JR, et al. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy Environ Sci. 2014;7:435–41.

    CAS  Google Scholar 

  54. Rao A, Chow PC, Gélinas S, Schlenker CW, Li CZ, Yip HL, et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature. 2013;500:435–9.

    CAS  PubMed  Google Scholar 

  55. Chow PC, Gélinas S, Rao A, Friend RH. Quantitative bimolecular recombination in organic photovoltaics through triplet exciton formation. J Am Chem Soc. 2014;136:3424–9.

    CAS  PubMed  Google Scholar 

  56. Gehrig DW, Howard IA, Laquai F. Charge carrier generation followed by triplet state formation, annihilation, and carrier recreation in PBDTTT-C/PC60BM photovoltaic blends. J Phys Chem C. 2015;119:13509–15.

    CAS  Google Scholar 

  57. Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nat Photonics. 2015;9:403–8.

    CAS  Google Scholar 

  58. Kawashima K, Osaka I, Takimiya K. Effect of chalcogen atom on the properties of naphthobischalcogenadiazole-based π-conjugated polymers. Chem Mater. 2015;27:6558–70.

    CAS  Google Scholar 

  59. Vandewal K, Tvingstedt K, Manca JV, Inganäs O. Charge-transfer states and upper limit of the open-circuit voltage in polymer:fullerene organic solar cells. IEEE J Sel Top Quantum Electron. 2010;16:1676–84.

    CAS  Google Scholar 

  60. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys Rev B. 2010;81:125204.

    Google Scholar 

Download references

Acknowledgements

The author thanks Prof Sir Richard Friend, Dr S. Matthew Menke, Prof Itaru Osaka, Prof Shinzaburo Ito, and Prof Hideo Ohkita for fruitful discussions. The author also thanks all other collaborators. This work was partly supported by JSPS Postdoctoral Fellowships for Research Abroad, JSPS KAKENHI Grant-in-Aid for Young Scientists (B) No. 17K14527, and JST PRESTO program Grant Number JPMJPR1874. The author also acknowledges financial support from Trycom Advance Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Tamai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamai, Y. Delocalization boosts charge separation in organic solar cells. Polym J 52, 691–700 (2020). https://doi.org/10.1038/s41428-020-0339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0339-4

This article is cited by

Search

Quick links