Skip to main content
Log in

Sulfurized Methyl Esters of Soya Fatty Acids: Synthesis and Characterization

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Soy-based fatty acid methyl ester disulfide (FAME-S2) was synthesized in good yield by oxidation of polymercaptanized soybean oil fatty acid methyl ester (PM-FAME). The chemical structure of FAME-S2 is of interest because of its potential as a biobased multi-functional additive in lubricant formulations. Neat FAME-S2 and their blends (1–10% w/w) in polyalphaolefin (PAO-6) and high oleic sunflower oil (HOSuO) were characterized for its chemical, physical and tribological properties. Blends of FAME-S2 in HOSuO relative to similar blends of PM-FAME displayed higher oxidation onset temperature (> 15 °C) that remained constant with increasing concentration. Evaluation of FAME-S2 as an extreme pressure (EP) additive on a 4-ball tribometer showed increasing weld point (WP) with increasing concentration to a maximum of 220 and 180 kgf in HOSuO and PAO-6, respectively, at 10% w/w concentration. The results indicate that FAME-S2 has both anti-oxidant and EP properties and can be applied as a multi-functional biobased additive in lubricant formulation. This work demonstrates an encouraging progress towards the development of effective biobased lubricant additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Swedberg, S., Sullivan, T.: Biobased, biodegradable and food grade lubes. Lubes ‘N’ Greases 25(2), 28–33 (2019)

    Google Scholar 

  2. Sharma, B.K., Biresaw, G. (eds.): Environmentally Friendly and Biobased Lubricants. CRC Press Taylor & Francis Group, Boca Raton (2016)

    Google Scholar 

  3. Biresaw, G., Laszlo, J.A., Evans, K.O., Compton, D.L., Bantchev, G.B.: Synthesis and tribological investigation of lipoyl glycerides. J. Agric. Food Chem. 62, 2233–2243 (2014). https://doi.org/10.1021/jf404289r

    Article  CAS  Google Scholar 

  4. Biresaw, G., Compton, D., Evans, K., Bantchev, G.: Lipoate ester multi-functional lubricant additives. Ind. Eng. Chem. Res. 55, 373–383 (2016). https://doi.org/10.1021/acs.iecr.5b03697)

    Article  CAS  Google Scholar 

  5. Bantchev, G.B., Moser, B.R., Murray, R.E., Biresaw, G., Hughes, S.R.: Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils. J. Am. Oil Chem. Soc. 93, 1671–1682 (2016)

    Article  CAS  Google Scholar 

  6. Biresaw, G., Bantchev, G.B.: Tribological properties of biobased ester phosphonates. J. Am. Oil Chem. Soc. 90, 891–902 (2013)

    Article  CAS  Google Scholar 

  7. Biresaw, G., Bantchev, G.: Tribological properties of limonene bisphosphonates. Tribol. Lett. 60(1), 11–25 (2015)

    Article  Google Scholar 

  8. Biresaw, G., Bantchev, G.B., Harry-O’kuru, R.E.: Biobased poly-phosphonate additives from methyl linoleates. Tribol. Trans. 62(3), 428–442 (2019)

    Article  CAS  Google Scholar 

  9. Matson, M.S., Refvik, M.D., Netemeyer, E.J., Cameron, C., Marrion, A.R., Wright, A.C.: Methods of mercaptanizing olefinic hydrocarbons and compositions produced therefrom. US Patent 8,461,293 (Assignee: Chevron-Phillips Chemical Company LP The Woodlands, Texas) (2013)

  10. Biresaw, G., Lansing, J., Bantchev, G., Murray, R., Harry-O’kuru, R.: (2017) Tribological Investigation of Polymercaptanized Soybean Oil. Tribol. Lett. 65, 87 (2017). https://doi.org/10.1007/s11249-017-0866-0)

    Article  Google Scholar 

  11. Ionescu, M., Radojcic, D., Wana, X., Petrovic, Z.S., Upshaw, T.A.: Functionalized vegetable oils as precursors for polymers by thiol-ene reaction. Eur. Polym. J. 67, 439–448 (2015)

    Article  CAS  Google Scholar 

  12. Javni, I., Bilic, O., Ljubic, D., Wan, X., Petrovic, Z.S., Upshaw, T.A.: Polymercaptan-based polyurethane foams. J. Cell. Plast. 52(6), 643–656 (2016)

    Article  CAS  Google Scholar 

  13. Liu, K.T., Tong, Y.C.: A facile conversion of thiols to disulfides. Synthesis 1978, 669–670 (1978)

    Article  Google Scholar 

  14. Evans, B.J., Doi, J.T., Musker, W.K.: 19F NMR Study of the Reaction of p -Fluorobenzenethiol and Disulfide with Periodate and Other Selected Oxidizing Agents. J. Org. Chem. 55, 2337–2344 (1990)

    Article  CAS  Google Scholar 

  15. Tam, J.P., Wu, C.-R., Liu, W., Zhang, J.-W.: Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J. Am. Chem. Soc. 113, 6657–6662 (1991)

    Article  CAS  Google Scholar 

  16. Shi, T., Rabenstein, D.L.: Discovery of a highly selective and efficient reagent for formation of intramolecular disulfide bonds in peptides. J. Am. Chem. Soc. 122(29), 6809–6815 (2000)

    Article  CAS  Google Scholar 

  17. Kirihara, M., Asai, Y., Ogawa, S., Noguchi, T., Hatano, A., Hirai, Y.: A mild and environmentally benign oxidation of thiols to disulfides. Synthesis 21, 3286–3289 (2007)

    Article  Google Scholar 

  18. Harutyunyan, R., Rezvani, M.A., Heravi, M.M.: H5[PMo10V2O40] as a green, reusable, and highly efficient catalyst for the oxidation of dithiols in intermolecular reactions using permanganate as an oxidizing reagent. Synth. React. Inorg. Met. Org., Nano-Met. Chem. 41(1), 94–99 (2011)

    CAS  Google Scholar 

  19. He, Y., Hang, D., Lu, M.: A simple and practical method for the oxidation of thiols to disulfides at mild conditions without solvents. Phosphorus Sulfur Silicon Relat. Elem. 187(9), 1118–1124 (2012)

    Article  CAS  Google Scholar 

  20. Bayraq, S.S., Nikseresht, A., Khosravi, I.: (NH4)6Mo7O24•4H2O as an efficient, selective, and reusable catalyst for the oxidation of thiols to disulfides using potassium bromate. Phosphorus Sulfur Silicon Relat. Elem. 188(9), 1236–1243 (2013)

    Article  CAS  Google Scholar 

  21. Lui, Y., Wang, H., Wang, C., Wan, J.-P., Wen, C.: Bio-based green solvent mediated disulfide synthesis via thiol couplings free of catalyst and additive. RSC Adv. 3, 21369–21372 (2013)

    Article  Google Scholar 

  22. Wang, H., Huang, G., Sun, Y., Liu, Y.: Simple conversion of thiols to disulfides in EtOH under ambient aerobic conditions without using any catalyst or additive. J. Chem. Res. 38, 96–97 (2014)

    Article  CAS  Google Scholar 

  23. Yuan, J., Ma, X., Yi, H., Liu, C., Lei, A.: I2-catalyzed oxidative C(sp3)–H/S–H coupling: utilizing alkanes and mercaptans as the nucleophiles. Chem. Commun. 50, 14386–14389 (2014)

    Article  CAS  Google Scholar 

  24. Shah, S.S., Karthik, S., Singh, N.D.P.: Vis/NIR light driven mild and clean synthesis of disulfides in the presence of Cu2(OH)PO4 under aerobic conditions. RSC Adv. 5(56), 45416–45419 (2015)

    Article  CAS  Google Scholar 

  25. Qiu, X., Yang, X., Zhang, Y., Song, S., Jiao, N.: Efficient and practical synthesis of unsymmetrical disulfides via base-catalyzed aerobic oxidative dehydrogenative coupling of thiols. Org. Chem. Front. 6(13), 2220–2225 (2019)

    Article  CAS  Google Scholar 

  26. Rossrucker, T., Fessenbecker, A.: Sulfur carriers. In: Rudnick, L.R. (ed.) Lubricant Additives. Chemistry and Applications, pp. 259–291. CRC Press, Boca Raton (2003)

    Chapter  Google Scholar 

  27. Bantchev, G.B., Biresaw, G., Mohamed, A., Moser, J.: Temperature dependence of the oxidative stability of corn oil and polyalphaolefin in the presence of sulfides. Thermochim. Acta 513(1–2), 94–99 (2011)

    Article  CAS  Google Scholar 

  28. Biresaw, G., Asadauskas, S.J., McClure, T.G.: Polysulfide and biobased extreme pressure additive performance in vegetable vs paraffinic base oils. Ind. Eng. Chem. Res. 51(1), 262–273 (2012)

    Article  CAS  Google Scholar 

  29. Li, W., Jiang, C., Chao, M., Wang, X.: Natural garlic oil as a high-performance, environmentally friendly, extreme pressure additive in lubricating oils. ACS Sustain. Chem. Eng. 2(4), 798–803 (2014)

    Article  CAS  Google Scholar 

  30. Biresaw, G., Lansing, J.C., Bantchev, G.B., Murray, R.E., Harry-O’Kuru, R.E.: Chemical, physical and tribological investigation of polymercaptanized soybean oil. Tribol. Lett. 65(87), 1–16 (2017)

    CAS  Google Scholar 

  31. A.O.C.S. Official: Method Te 2a-64, Acid Value, p. 1 (1997)

  32. ASTM D 7042-11a: “Standard test method for dynamic viscosity and density of liquids by Stabinger viscometer (and the Calculation of Kinematic Viscosity),” Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, pp. 186–193 (2012)

  33. ASTM D 2270-93: “Standard practice for calculating viscosity index from kinematic viscosity at 40 and 100 °C,” Annual Book of ASTM Standards. American Society for Testing and Materials: West Conshohocken, pp. 849–854 (2012)

  34. ASTM D 6186-08: “Standard test method for oxidation induction time of lubricating oils by pressure differential scanning calorimetry (PDSC),” Annual Book of ASTM Standards. American Society for Testing and Materials: West Conshohocken, pp. 52–56 (2012)

  35. ASTM D 97: “Standard test method for pour point of petroleum products,” Annual Book of ASTM Standards. American Society for Testing and Materials: West Conshohocken, pp. 100–104 (2012)

  36. ASTM D 2500: “Standard test method for cloud point of petroleum products,” Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, pp. 949–953 (2012)

  37. ASTM D 2783–88: “Standard test method for measurement of extreme-pressure properties of lubricating fluids (Four-Ball Method),” Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, pp. 130–137 (2012)

  38. Noor, M.A.M., Sendijarevic, V., Hoong, S.S., Sendijarevic, I., Ismail, T.N.M.T., Hanzah, N.A., Noor, N.M., Palam, K.D.P., Ghazali, R., Hassan, H.A.: Molecular weight determination of palm olein polyols by gel permeation chromatography using polyether polyols calibration. J. Am. Oil Chem. Soc. 93, 721–730 (2016). https://doi.org/10.1007/s11746-016-2812-y

    Article  CAS  Google Scholar 

  39. Grubisic, Z., Rempp, P., Benoit, H.: A universal calibration for gel permeation chromatography. Polym. Lett. 5, 753–759 (1967). https://doi.org/10.1002/pol.1967.110050903. Re-published. In: (1996) Journal of Polymer Science, Part B: Polymer Physics, 34:1707-1713. DOI: 10.1002/polb.1996.922

    Article  Google Scholar 

  40. Wyatt, P.J.: Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta 272, 1–40 (1993)

    Article  CAS  Google Scholar 

  41. Braun, J.L., Kadla, J.F.J.: A relatively simple method for calculating Mark-Houwink parameters using basic definitions. Appl. Polym. Sci. 114, 3303–3309 (2009)

    Article  CAS  Google Scholar 

  42. Bantchev, G.B., Cermak, S.C., Durham, A.L., Price, N.P.J.: Estolide molecular weight distribution via gel permeation chromatography. J. Am. Oil Chem. Soc. 96, 365–380 (2019)

    Article  CAS  Google Scholar 

  43. Mayo, D.W., Miller, F.A., Hannah, R.W.: Course Notes on the interpretation of infrared and Raman Spectra. Wiley, Hoboken (2004)

    Book  Google Scholar 

  44. Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectroscopic Identification of Organic Compounds, 7th edn. Wiley, Hoboken (2005)

    Google Scholar 

  45. Biresaw, G., Adharyu, A., Erhan, S.Z., Carriere, C.J.: Friction and adsorption properties of normal and high oleic soybean oils. J. Am. Oil Chem. Soc. 79(1), 53–58 (2002)

    Article  CAS  Google Scholar 

  46. Asadauskas, S.J., Biresaw, G., McClure, T.G.: Effects of chlorinated paraffin and ZDDP concentrations on boundary lubrication properties of mineral and soybean oils. Tribol. Lett. 37(2), 111–121 (2010)

    Article  CAS  Google Scholar 

  47. Hope, K.: Balancing lubricant properties with vegetable oil and PAO blends. Proceedings USB Lube TAP (2006)

  48. Biresaw, G.: Environmentally friendly lubricant-development programs at USDA. In: Sik, R. (ed.) Environmentally Considerate Lubricants, STP 1575, pp. 1–23. ASTM International, West Conshohocken (2014)

    Google Scholar 

  49. Galiatsatos, V., Neaffer, R.O., Sen, S., Sherman, B.J.: Refractive index, stress-optical coefficient, and optical configuration arameters of polymers. In: Mark, J.E. (ed.) Physical properties of Polymers Handbook, pp. 535–543. AIP Press, Woodbury (1996)

    Google Scholar 

  50. Bala, V., Hartley, R.J., Hughes, L.J.: The influence of chemical structure on the oxidative stability of organic sulfides. Lubr. Eng. 52, 868–873 (1996)

    CAS  Google Scholar 

  51. Schey, J.A.: Tribology in Metalworking Friction, Lubrication and Wear. American Society of Metals, Metals Park (1983)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Ms. Linda Cao, Ms. Linda Manthey, Mr. Dan Knetzer and Dr. Karl Vermillion for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girma Biresaw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biresaw, G., Bantchev, G.B., Lansing, J. et al. Sulfurized Methyl Esters of Soya Fatty Acids: Synthesis and Characterization. Tribol Lett 68, 61 (2020). https://doi.org/10.1007/s11249-020-01292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01292-y

Keywords

Navigation