Skip to main content

Advertisement

Log in

Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Zhunuo porphyry copper deposit in the Gangdese belt of southern Tibet contains 2.37 Mt at 0.57% Cu. In this deposit, Eocene rhyolite (51.6 ± 1.0 Ma) and quartz porphyry (49.1 ± 0.6 Ma) were intruded by monzogranite (14.7 ± 0.3 Ma) and monzogranite porphyry (14.5 ± 0.2 Ma) which commonly host mafic microgranular enclaves (14.9 ± 0.3 Ma). Late-mineralization diorite porphyry (14.2 ± 0.2 Ma) and post-mineralization lamprophyre dikes (12.2 ± 0.1 Ma) and granite porphyry (12.0 ± 0.2 Ma) crosscut the Miocene intrusions. Two quartz–molybdenittie veins yielded molybdenite Re-Os model ages of 14.8 ± 0.1 Ma and 14.4 ± 0.1 Ma, and another two quartz–muscovite–llite–pyrite–molybdenite veins yielded molybdenite Re-Os model ages of 14.2 ± 0.1 Ma and 13.5 ± 0.1 Ma. Zhunuo is characterized by early potassic alteration and associated quartz A veins centered on the monzogranite porphyry and adjacent monzogranite, distal propylitic alteration in the rhyolite, and late-stage phyllic alteration and associated quartz B veins, followed by D veins that affected quartz porphyry and potassic-altered rocks. Copper ores are mainly distributed in the potassic alteration zone that was overprinted by phyllic alteration. Copper mineralization likely occurred during potassic alteration stage and was locally remobilized and redeposited during phyllic alteration stage, or occurred during phyllic alteration stage. The post-mineralization granite porphyry has lower whole-rock Sr/Y (< 20) and εNd(t) (− 9.3 to − 9.0) and higher zircon U/Yb (4 to 27) than the Miocene intrusions (Sr/Y > 40; εNd(t) = − 6.9 to − 6.1; U/Yb = 1 to 10). Limited input of juvenile melts could explain the low potential for copper mineralization in the post-mineralization granite porphyry at Zhunuo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364

    Google Scholar 

  • Bouzari F, Clark AH (2006) Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado hypogene protore, I Región, northern Chile. Econ Geol 101:95–134

    Google Scholar 

  • Cao K, Yang ZM, Mavrogenes J, White NC, Xu JF, Li Y, Li WK (2019) Geology and genesis of the giant Pulang porphyry Cu-Au district, Yunnan, SW China. Econ Geol 114:275–301

    Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath Southern Tibet. Geology 31:1021–1024

    Google Scholar 

  • Deng J, Wang QF, Li GJ, Santosh M (2014) Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth Sci Rev 138:268–299

    Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada 6km vertical reconstruction. Econ Geol 87:1963–2001

    Google Scholar 

  • Dilles JH, Kent AJR, Wooden JL, Tosdal RM, Koleszar A, Lee RG, Farmer LP (2015) Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ Geol 110:241–251

    Google Scholar 

  • Ding L, Kapp P, Wan X (2005) Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south Central Tibet. Tectonics 24:TC3001

    Google Scholar 

  • Gardiner NJ, Hawkesworth CJ, Robb LJ, Whitehouse MJ, Roberts NMW, Kirkland CL, Evans NJ (2017) Contrasting granite metallogeny through the zircon record: a case study from Myanmar. Sci Rep 7:748

    Google Scholar 

  • Grimes CB, Wooden JL, Cheadle MJ, John BE (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol 170:46

    Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Google Scholar 

  • Harris AC, Golding SD, White NC (2005) Bajo de la Alumbrera copper-gold deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ Geol 100:863–886

    Google Scholar 

  • Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404

    Google Scholar 

  • Hollings P, Cooke D, Clark A (2005) Regional geochemistry of Tertiary igneous rocks in central Chile: implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Econ Geol 100:887–904

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 5:27–62

    Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid–Miocene east–west extension in southern, Tibet. Earth Planet Sci Lett 220:139–155

    Google Scholar 

  • Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF (2015a) A genetic linkage between subduction–and collision–related porphyry Cu deposits in continental collision zones. Geology 43:247–250

    Google Scholar 

  • Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD, McCuaig TC (2015b) Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan–Tibetan orogen. Econ Geol 110:1541–1575

    Google Scholar 

  • Huang Y, Li GM, Ding J, Dai J, Yan GQ, Dong SL, Huang HX (2017) Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan Plateau, SW China. Acta Geologica Sinica - English Edition 91:109–134

    Google Scholar 

  • Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245

    Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418

    Google Scholar 

  • Jugo PJ, Luth RW, Richards JP (2005) An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfi de or sulfate liquids at 1300°C and 1.0 GPa. J Petrol 46:783–798

    Google Scholar 

  • Klötzli U, Klötzli E, Günes Z, Kosler J (2009) Accuracy of laser ablation U-Pb zircon dating: results from a test using five different reference zircons. Geostandards Geoanalytical Research 33:5–15

    Google Scholar 

  • Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB, Einaudi MT, Kunze K (2005) Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry. Earth Planet Sci Lett 235:229–243

    Google Scholar 

  • Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105:91–118

    Google Scholar 

  • Lang XH, Tang JX, Chen YC, Li ZJ, Deng Q, Huang Y, Wang CH, Chen ZL, Zhou Y (2012) Neo-Tethys mineralization on the southern margin of the Gangdies metallogenic belt, Tibet, China. J China Univ Geosci 37:515–525 (in Chinese with English abstract)

    Google Scholar 

  • Lee HY, Chung SL, Lo CH, Ji J, Lee TY, Qian Q, Zhang Q (2009) Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 477:20–35

    Google Scholar 

  • Lee HY, Chung SL, Ji JQ, Qian Q, Gallet S, Lo CH, Lee TY, Zhang Q (2012) Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J Asian Earth Sci 53:96–114

    Google Scholar 

  • Leng CB, Zhang XC, Zhong H, Hu RZ, Zhou WD, Li C (2013) Re-Os molybdenite ages and zircon Hf isotopes of the Gangjiang porphyry cu-Mo deposit in the Tibetan orogen. Mineral Deposita 48:85–602

    Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Chen L, Zhao JX (2011) Postcollisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust. Lithos 126:265–277

    Google Scholar 

  • Li XH, Liu XM, Liu YS, Su L, Sun WD, Huang HQ, Yi K (2015) Accuracy of LA-ICPMS zircon U-Pb age determination: an inter-laboratory comparison. Science China. Earth Sci 58:1722–1730

    Google Scholar 

  • Lickfold V, Cooke DR, Smith SG, Ullrich TD (2003) Endeavour copper-gold porphyry deposits, Northparkes, New South Wales: intrusive history and fluid evolution. Econ Geol 98:1607–1636

    Google Scholar 

  • Loader MA, Wilkinson JJ, Armstrong RN (2017) The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet Sci Lett 472:107–119

    Google Scholar 

  • Lu YJ, Loucks RR, Fiorentini ML, Yang ZM, Hou ZQ (2015) Fluid flux melting generated post–collisional high Sr/Y copper–ore–forming water–rich magmas in Tibet. Geology 43:583–586

    Google Scholar 

  • Lu YJ, Loucks RR, Fiorentini M, McCuaig TC, Evans NJ, Yang ZM, Hou ZQ, Kirkland CL, Parra-Avila LA, Kobussen A (2016) Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. Society of Economic Geologists Special Publication 19:329–347

    Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ Geol 100:835–862

    Google Scholar 

  • Meng XJ, Hou ZQ, Gao YF, Huang W, Qu XM, Qu WJ (2003) Re-Os dating for molybdenite from Qulong porphyry copper deposit in Gangdese metallogenic belt, Xizang and its metallogenic significance. Geological Review 49:660–666 (in Chinese with English abstract)

    Google Scholar 

  • Miller C, Schuster R, Klötzli U, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:699–715

    Google Scholar 

  • Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Google Scholar 

  • Monecke T, Monecke J, Reynolds TJ, Tsuruoka S, Bennett MM, Skewes WB, Palin RM (2018) Quartz solubility in the H2O-NaCl system: a framework for understanding vein formation in porphyry copper deposits. Econ Geol 113:1007–1046

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Google Scholar 

  • Proffett JM (2003) Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Econ Geol 98:1535–1574

    Google Scholar 

  • Qu XM, Hou ZQ, Khin Z, Li YG (2007) Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: preliminary geochemical and geochronological results. Ore Geol Rev 31:205–223

    Google Scholar 

  • Redmond PB, Einaudi MT, Inan EE, Landtwing MR, Heinrich CA (2004) Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposits, Utah. Geology 32:217–220

    Google Scholar 

  • Replumaz A, Negredo AM, Villasenor A, Guillot S (2010) Indian continental subduction and slab break–off during Tertiary collision. Terra Nova 22:290–296

    Google Scholar 

  • Reynolds TJ, Beane RE (1985) Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ Geol 80:1328–1347

    Google Scholar 

  • Richards JP, Kerrich R (2007) Special paper: Adakite–like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol 102:537–576

    Google Scholar 

  • Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Econ Geol 107:295–332

    Google Scholar 

  • Rui ZY, Hou ZQ, Qu XM, Zhang LS, Wang LS, Liu YL (2003) Metallogenic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibet plateau. Mineral Deposits 22:217–225 (In Chinese with English abstract)

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

  • Sun X, Zheng YY, Wu S, You ZM, Wu X, Li M, Zhou TC, Dong J (2013) Mineralization age and petrogenesis of associated intrusions in the Mingze-Chengba porphyry-skarn Mo-Cu deposit, Gangdese. Acta Geol Sin 29:1392–1406 (In Chinese with English abstract)

    Google Scholar 

  • Sun X, Zheng Y, Xu J, Huang LH, Guo F, Gao SB (2017a) Metallogenesis and ore controls of Cenozoic porphyry Mo deposits in the Gangdese belt of southern Tibet. Ore Geol Rev 81:996–1014

    Google Scholar 

  • Sun X, Zheng Y, Li M, Ouyang HT, Liu QQ, Jing XK, Sun GP, Song QJ (2017b) Genesis of Luobuzhen Pb–Zn veins: implications for porphyry Cu systems and exploration targeting at Luobuzhen-Dongshibu in western Gangdese belt, southern Tibet. Ore Geol Rev 82:252–267

    Google Scholar 

  • Sun X, Lu YJ, McCuaig TC, Zheng YY, Chang HF, Guo F, Xu LJ (2018) Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J Petrol 59:341–386

    Google Scholar 

  • Tafti R, Mortensen JK, Lang JR, Rebagliati M, Oliver J (2009) Jurassic U-Pb and Re-Os ages of the newly discovered Xietongmen Cu-Au porphyry district, Tibet, PRC: implications for metallogenic epochs in the southern Gangdese belt. Econ Geol 104:127–136

    Google Scholar 

  • Tang JX, Lang XH, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q, Zhou Y (2015) Geological characteristics and genesis of the Jurassic No. I porphyry copper-gold deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet, PRC. Ore Geol Rev 70:438–556

    Google Scholar 

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W (1996) Post collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Google Scholar 

  • Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB, DuFrane SA (2014) Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern Gangdese belt, Tibet: implication for collision-related porphyry Cu-Mo-Au mineralization. Econ Geol 109:1943–1965

    Google Scholar 

  • Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA, Zhu JJ (2015a) The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet. Earth Sci Rev 150:68–94

    Google Scholar 

  • Wang Q, Zhu DC, Cawood PA, Zhao ZD, Liu SA, Chung SL, Zhang LL, Liu D, Zheng YC, Dai JG (2015b) Eocene magmatic processes and crustal thickening in southern Tibet: insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith. Lithos 239:128–141

    Google Scholar 

  • Wen DR, Liu DY, Chung SL, Chu MF, Ji J, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH (2008) Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol 252:191–201

    Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114

    Google Scholar 

  • Wu FY, Ji WQ, Wang JG, Liu CZ, Chung SL, Cliet PD (2014) Zircon U–Pb and Hf isotopic constraints on the onset time of India–Asia collision. Am J Sci 314:548–579

    Google Scholar 

  • Xiao B, Qin K, Li G, Li J, Xia D, Chen L, Zhao J (2012) Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu–Mo deposit, southern Tibet, China. Resour Geol 62:4–18

    Google Scholar 

  • Xu WY, Pan FC, Qu XM, Hou ZQ, Yang ZS, Chen WS, Yang D, Cui YH (2009) Xiongcun, Tibet: a telescoped system of veinlet-disseminated Cu(Au) mineralization and late vein-style Au(Ag)-polymetallic mineralization in a continental collision zone. Ore Geol Rev 36:2–24

    Google Scholar 

  • Xu J, Zheng YY, Sun X, Shen YH (2016) Alteration and mineralization at the Zhibula Cu skarn deposit, Gangdese belt, Tibet. Ore Geol Rev 75:304–326

    Google Scholar 

  • Yang ZM, Cooke DR (2019) Porphyry copper deposits in China. Society of Economic Geologist Special Publication 22:133–187

  • Yang ZM, Hou ZQ, White NC, Chang Z, Li Z, Song Y (2009) Geology of the postcollisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geol Rev 36:133–159

    Google Scholar 

  • Yang ZM, Goldfarb R, Chang ZS (2016) Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Society of Economic Geologist Special Publication 19:279–300

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Google Scholar 

  • Zeng YC, Chen JL, Xu JF, Lei M, Xiong QW (2017) Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: constraints from geochronology and geochemistry. Gondwana Res 41:51–64

    Google Scholar 

  • Zhang WP, Mo XX, Zhu DC, Yuan SH, Wang LQ (2009) The genesis of the Xiongcun copper-gold deposit in southern Gangdise, Tibet: evidence from zircon U-Pb SHRIMP ages. Acta Geol Sin 28:235–242 (In Chinese with English abstract)

    Google Scholar 

  • Zhang S, Zheng YC, Huang KX, Li W, Sun QZ, Li QY, Fu Q, Lang W (2012) Re–Os dating of molybdenite from Nuri Cu–W–Mo deposit and its geological significance. Mineral Deposits 31:337–346 (In Chinese with English abstract)

    Google Scholar 

  • Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH, Hou ZQ (2009) Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113:190–212

    Google Scholar 

  • Zheng YY, Zhang GY, Xu RK, Gao SB, Pang YC, Liang C, Du AD, Shi YR (2007) Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chin Sci Bull 52:3139–3147

    Google Scholar 

  • Zheng YC, Hou ZQ, Li W, Liang W, Huang KX, Li QY, Sun QZ, Fu Q, Zhang S (2012) Petrogenesis and geological implications of the Oligocene Chongmuda-Mingze adakite-like intrusions and their mafic enclaves, southern Tibet. J Geol 120:647–669

    Google Scholar 

  • Zheng WB, Tang JX, Zong KH, Ying LJ, Leng QF, Ding S, Lin B (2016) Geology of the Jiama porphyry copper–polymetallic system, Lhasa region, China. Ore Geol Rev 74:151–169

  • Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Google Scholar 

  • Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu YL, Liu SA, Wu FY, Mo XX (2015) Magmatic record of India–Asia collision. Sci Rep 5:17236

Download references

Acknowledgments

Constructive comments on an earlier draft of the manuscript by David Cooke and Zhi-ming Yang are gratefully acknowledged. This paper also benefited from Zhi-ming Yang, an anonymous reviewer, and editorial handling by Huayong Chen and Georges Beaudoin. You-ye Zheng and Guang-wu Jiang are thanked for providing access to the mine site and drill cores. Some master students (e.g., Zhi-min You, Song Wu, Jian-dong Li, Miao Li) are thanked for joint geological work and sample selection. We thank Bin Shi for the quartz CL images and Yali Sun for Re-Os isotope analyses.

Funding

Funding for this project was jointly granted by the National Key Research and Development Project of China (2016YFC0600305, 2017YFC0601506), National Natural Science Foundation of China (41302063, 41772077, 41973040), Program of the China Geological Survey (1212011220927), Project from the Ministry of Land and Resources (201511015), Changjiang Scholars and Innovative Research Team in University (IRT14R54), the 111 Project of the Ministry of Science and Technology (BP0719021), and Fundamental Research Funds for the Central Universities. Yongjun Lu acknowledges a Tibet pilot project from the ARC (Australian Research Council) Centre of Excellence for Core to Crust Fluid Systems (CCFS; CE110001017). This is contribution 1204 from the ARC Centre of Excellence for Core to Crust Fluid Systems (www.CCFS.mq.edu.au). Yongjun Lu publishes with the permission of the Executive Director of the Geological Survey of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Sun.

Additional information

Editorial handling: H. Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(XLSX 96 kb)

ESM 4

(DOCX 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Hollings, P. & Lu, YJ. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet. Miner Deposita 56, 457–480 (2021). https://doi.org/10.1007/s00126-020-00970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-00970-0

Keywords

Navigation