Skip to main content

Advertisement

Log in

Depauperate major histocompatibility complex variation in the endangered reticulated flatwoods salamander (Ambystoma bishopi)

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Reticulated flatwoods salamander (Ambystoma bishopi) populations began decreasing dramatically in the 1900s. Contemporary populations are small, isolated, and may be susceptible to inbreeding and reduced adaptive potential because of low genetic variation. Genetic variation at immune genes is especially important as it influences disease susceptibility and adaptation to emerging infectious pathogens, a central conservation concern for declining amphibians. We collected samples from across the extant range of this salamander to examine genetic variation at major histocompatibility complex (MHC) class Iα and IIβ exons as well as the mitochondrial control region. We screened tail or toe tissue for ranavirus, a pathogen associated with amphibian declines worldwide. Overall, we found low MHC variation when compared to other amphibian species and did not detect ranavirus at any site. MHC class Iα sequencing revealed only three alleles with a nucleotide diversity of 0.001, while MHC class IIβ had five alleles with a with nucleotide diversity of 0.004. However, unique variation still exists across this species’ range with private alleles at three sites. Unlike MHC diversity, mitochondrial variation was comparable to levels estimated for other amphibians with nine haplotypes observed, including one haplotype shared across all sites. We hypothesize that a combination of a historic disease outbreak and a population bottleneck may have contributed to low MHC diversity while maintaining higher levels of mitochondrial DNA variation. Ultimately, MHC data indicated that the reticulated flatwoods salamander may be at an elevated risk from infectious diseases due to low levels of immunogenetic variation necessary to combat novel pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S et al (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci 101:3490–3494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th edn. Chapter 24. Garland Science, New York

    Google Scholar 

  • Allender MC, Bunick D, Mitchell MA (2013) Development and validation of TaqMan quantitative PCR for detection of frog virus 3-like virus in eastern box turtles (Terrapene carolina carolina). J Virol Methods 188:121–125

    CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart G, Aitken S (2013) Conservation and the genetics of populations. Blackwell publishing

  • Babik W, Pabijan M, Arntzen JW, Cogâlniceanu D, Durka W, Radwan J (2009) Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol 18:769–781

    CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Bataille A, Cashins SD, Grogan L et al (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc R Soc B Biol Sci 282:20143127–20143127

    Google Scholar 

  • Belasen AM, Bletz MC, Leite D et al (2019) Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front Ecol Evol 6:236

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci 95:9031–9036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    CAS  PubMed  Google Scholar 

  • Bishop DC, Haas CA (2005) Burning trends and potential negative effects of suppressing wetland fires on flatwoods salamanders. Nat Areas J 25:290–294

    Google Scholar 

  • Blackburn M, Wayland J, Smith WH et al (2015) First report of ranavirus and Batrachochytrium dendrobatidis in green salamanders (Aneides aeneus) from Virginia, USA. Herpetol Rev 46:357–361

    Google Scholar 

  • Bondinas GP, Moustakas AK, Papadopoulos GK (2006) The spectrum of HLA-DQ and HLA-DR alleles: a listing correlating sequence and structure with function. Immunogenetics 59:539–553

    Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708

    PubMed  Google Scholar 

  • Bos DH, DeWoody JA (2005) Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 57:775–781

    CAS  PubMed  Google Scholar 

  • Chandler HC, Rypel AL, Jiao Y et al (2016) Hindcasting historical breeding conditions for an endangered salamander in ephemeral wetlands of the southeastern USA: implications of climate change. PLoS One 11:e0150169

    PubMed  PubMed Central  Google Scholar 

  • Chinchar VG (2002) Ranaviruses (family Iridoviridae): emerging cold-blooded killers. Arch Virol 147:447–470

    CAS  PubMed  Google Scholar 

  • Church SA, Kraus JM, Mitchell JC, Church DR, Taylor DR (2003) Evidence for multiple Pleistocene refugia in the postglacial expansion of the eastern tiger salamander, Ambystoma tigrinum tigrinum. Evolution 57:372–383

    PubMed  Google Scholar 

  • Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB (2017) Ranavirus phylogenomics: signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 511:330–343

    CAS  PubMed  Google Scholar 

  • Contreras V, Martínez-Meyer E, Valiente E et al (2009) Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv 142:2881–2885

    Google Scholar 

  • Core Team R (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Elbers JP, Taylor SS (2016) Major histocompatibility complex polymorphism in reptile conservation. Herpetol Conserv Biol 11:1–12

    Google Scholar 

  • Farmer AL, Walls SC, Haas C et al (2016) A statewide species and habitat assessment for the reticulated flatwoods salamander, frosted flatwoods salamander, and striped newt. Florida Fish and Wildlife Annual Report

  • Fox S, Greer A, Torres-Cervantes R, Collins J (2006) First case of ranavirus-associated morbidity and mortality in natural populations of the South American frog Atelognathus patagonicus. Dis Aquat Org 72:87–92

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press

  • Frost CC (1993) Four centuries of changing landscape patterns in the longleaf pine ecosystem. In: Proceedings of the Tall Timbers Fire Ecology Conference. pp 17–43

  • Fu M, Waldman B (2017) Major histocompatibility complex variation and the evolution of resistance to amphibian chytridiomycosis. Immunogenetics 69:529–536

    CAS  PubMed  Google Scholar 

  • Gold K, Reed P, Bemis D, Miller DL, Gray MJ, Souza MJ (2013) Efficacy of common disinfectants and terbinafine in inactivating the growth of Batrachochytrium dendrobatidis in culture. Dis Aquat Org 107:77–81

    CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Gray MJ, Chinchar VG (eds) (2015) Ranaviruses. Springer International Publishing, Cham

    Google Scholar 

  • Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001. Ann N Y Acad Sci 969:323–339

    PubMed  Google Scholar 

  • Greer AL, Collins JP (2007) Sensitivity of a diagnostic test for amphibian Ranavirus varies with sampling protocol. J Wildl Dis 43:525–532

    PubMed  Google Scholar 

  • Greer AL, Brunner J, Collins JP (2009) Spatial and temporal patterns of Ambystoma tigrinum virus (ATV) prevalence in tiger salamanders Ambystoma tigrinum nebulosum. Dis Aquat Org 85:1–6

    Google Scholar 

  • IUCN [International Union for Conservation of Nature] (2008) Ambystoma bishopi: John Palis, Geoffrey Hammerson: the IUCN Red List of Threatened Species. International Union for Conservation of Nature

  • Johnson AJ, Pessier AP, Wellehan JFX, Childress A, Norton TM, Stedman NL, Bloom DC, Belzer W, Titus VR, Wagner R, Brooks JW, Spratt J, Jacobson ER (2008) Ranavirus infection of free-ranging and captive box turtles and tortoises in the United States. J Wildl Dis 44:851–863

    CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kiemnec-Tyburczy KM, Richmond JQ, Savage AE et al (2012) Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity 109:146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kik M, Martel A, der Sluijs AS et al (2011) Ranavirus-associated mass mortality in wild amphibians, the Netherlands, 2010: a first report. Vet J 190:284–286

    PubMed  Google Scholar 

  • Kosakovsky P, Sergei L, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Google Scholar 

  • Kosch TA, Eimes JA, Didinger C, Brannelly LA, Waldman B, Berger L, Skerratt LF (2017) Characterization of MHC class IA in the endangered southern corroboree frog. Immunogenetics 69:165–174

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Battistuzzi FU (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

  • Lillie M, Shine R, Belov K (2014) Characterisation of major histocompatibility complex class I in the Australian cane toad, Rhinella marina. PLoS One 9:e102824

    PubMed  PubMed Central  Google Scholar 

  • Mao J, Hedrick RP, Chinchar VG (1997) Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses. Virology 229:212–220

    CAS  PubMed  Google Scholar 

  • Marsh IB, Whittington RJ, O’Rourke B et al (2002) Rapid differentiation of Australian, European and American ranaviruses based on variation in major capsid protein gene sequence. Mol Cell Probes 16:137–151

    CAS  PubMed  Google Scholar 

  • Martel A, Spitzen-van der Sluijs A, Blooi M et al (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci 110:15325–15329

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum ML (2007) Amphibian decline or extinction? Current declines dwarf background extinction rate. J Herpetol 41:483–491

    Google Scholar 

  • McIntyre RK, Guldin JM, Ettel T et al (2018) Restoration of longleaf pine in the southern United States: a status report 6

  • Miller D, Gray M, Storfer A (2011) Ecopathology of ranaviruses infecting amphibians. Viruses 3:2351–2373

    PubMed  PubMed Central  Google Scholar 

  • O’Donnell KM, Messerman AF, Barichivich WJ et al (2017) Structured decision making as a conservation tool for recovery planning of two endangered salamanders. J Nat Conserv 37:66–72

    Google Scholar 

  • O’Hanlon SJ, Rieux A, Farrer RA et al (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–627

    PubMed  PubMed Central  Google Scholar 

  • Palis J (1996) Flatwoods salamander (Ambystoma cingulatum Cope). Nat Areas J 16:49–54

    Google Scholar 

  • Palis JG (1997) Breeding migration of Ambystoma cingulatum in Florida. J Herpetol 31:71

    Google Scholar 

  • Pauly GB, Piskurek O, Shaffer HB (2007) Phylogeographic concordance in the southeastern United States: the flatwoods salamander, Ambystoma cingulatum, as a test case: flatwoods salamander phylogeography. Mol Ecol 16:415–429

    CAS  PubMed  Google Scholar 

  • Peace A, O’Regan SM, Spatz JA et al (2019) A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways. Ecol Model 410:108777

    Google Scholar 

  • Petranka J (2010) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Picco AM, Brunner JL, Collins JP (2007) Susceptibility of the endangered California tiger salamander, Ambystoma californiense, to ranavirus infection. J Wildl Dis 43:286–290

    PubMed  Google Scholar 

  • Price SJ, Garner TWJ, Nichols RA, Balloux F, Ayres C, Mora-Cabello de Alba A, Bosch J (2014) Collapse of amphibian communities due to an introduced ranavirus. Curr Biol 24:2586–2591

    CAS  PubMed  Google Scholar 

  • Radwan J, Biedryzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations. Biol Conserv 143:537–544

    PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Richman AD, Herrera G, Reynoso VH, Méndez G, Zambrano L (2007) Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum. Int J Immunogenet 34:475–478

    CAS  PubMed  Google Scholar 

  • Richmond JQ, Savage AE, Zamudio KR, Rosenblum EB (2009) Toward immunogenetic studies of amphibian chytridiomycosis: linking innate and acquired immunity. BioScience 59:311–320

    Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    CAS  PubMed  Google Scholar 

  • Sammut B, Laurens V, Tournefier A (1997) Isolation of MHC class I cDNAs from the axolotl Ambystoma mexicanum. Immunogenetics 45:285–294

    CAS  PubMed  Google Scholar 

  • Sammut B, Du Pasquier L, Ducoroy P et al (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29:2897–2907

    CAS  PubMed  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci 108:16705–16710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savage AE, Zamudio KR (2016) Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proc R Soc B Biol Sci 283:20153115

    Google Scholar 

  • Savage AE, Terrell KA, Gratwicke B et al (2016) Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen. Conservation Physiology

  • Savage AE, Mulder KP, Torres T, Wells S (2018) Lost but not forgotten: MHC genotypes predict overwinter survival despite depauperate MHC diversity in a declining frog. Conserv Genet 19:309–322

    CAS  Google Scholar 

  • Savage AE, Muletz-Wolz CR, Campbell Grant EH, Fleischer RC, Mulder KP (2019) Functional variation at an expressed MHC class IIβ locus associates with ranavirus infection intensity in larval anuran populations. Immunogenetics 71:335–346

    CAS  PubMed  Google Scholar 

  • Schloegel L, Daszak P, Cunningham A, Speare R, Hill B (2010) Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment. Dis Aquat Org 92:101–108

    Google Scholar 

  • Semlitsch RD, Walls SC, Barichivich WJ, O’Donnell KM (2017) Extinction debt as a driver of amphibian declines: an example with imperiled flatwoods salamanders. J Herpetol 51:12–18

    Google Scholar 

  • Shaffer HB, McKnight ML (1996) The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50:417–433

    CAS  PubMed  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16–34

    PubMed  PubMed Central  Google Scholar 

  • Taylor SS, Jenkins DA, Arcese P (2012) Loss of MHC and neutral variation in Peary Caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions. PLoS One

  • Teacher AGF, Garner TWJ, Nichols RA (2009) Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (ranavirus). PLoS One

  • Tracy KE, Kiemnec-Tyburczy KM, DeWoody JA, Parra-Olea G, Zamudio KR (2015) Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex. Immunogenetics 67:323–335

    CAS  PubMed  Google Scholar 

  • USFWS [U.S. Fish and Wildlife Service] (2009) Endangered and threatened wildlife and plants; determination of endangered status for reticulated flatwoods salamander; designation of critical habitat for frosted flatwoods salamander and reticulated flatwoods salamander. Federal Register. 74 FR 6700

  • USFWS [U.S. Fish and Wildlife Service] (2015) Reticulated flatwoods salamander (Ambystoma bishopi) 5-year review: summary and evaluation. Federal Register. 79 FR 56821

  • Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35:773–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wendt AS (2017) A population genetic investigation of the reticulated flatwoods salamander (Ambystoma bishopi) on Eglin Air Force Base (MS thesis). Georgia Southern University, Statesboro

    Google Scholar 

  • Zamudio KR, Savage WK (2003) Historical isolation, range expansion, and secondary contact of two highly divergent mitochondrial lineages in spotted salamanders (Ambystoma maculatum). Evolution 57:1631–1652

    PubMed  Google Scholar 

  • Zhao M, Wang Y, Shen H et al (2013) Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species. BMC Evol Biol 13:113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu R, Chen Z, Wang J, Yuan JD, Liao XY, Gui JF, Zhang QY (2014) Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants. Dev Comp Immunol 42:311–322

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to A. Perez-Umphrey, C. Rutt, A. Snider, A. Settlecowski, A. Bresnan, and T. Turner for extensive edits to this manuscript as well as Dr. Kim Terrell and Dr. Chris Austin, for their support and helpful comments. Thank you to everyone who helped in sample acquisition: K. Jones, B. Rincon, V. Porter, C. Abeles, A. Farmer, P. Hill, L. Smith, R. Bilbow, J. de Silva, K. Erwin, B. Moore, J. Sandoval, and E. Browning. We are grateful to A. Wendt who extracted all of the samples collected on Eglin and to Dr. M. Allender for providing a linearized ranavirus plasmid. Portions of this research were conducted with high-performance computational resources provided by the Louisiana Optical Network Infrastructure (http://www.loni.org). This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, McIntire Stennis program. Collection of tissue samples and extraction of DNA from salamanders on Eglin Air Force Base was supported by Eglin Air Force Base Jackson Guard, the US Air Force Civil Engineer Center, and the US Fish and Wildlife Service. Salamander samples from Eglin Air Force Base were collected under US Fish and Wildlife Service Threatened and Endangered Species Permit #TE049502 and Virginia Tech IACUC protocols #13-129 and #16-100. Samples from Mayhaw WMA were collected under Georgia Department of Natural Resources scientific collection permit #029, and samples at Garcon Point and Escribano Point were collected under the section 6 agreement between USFWS and Florida Fish and Wildlife Conservation Commission.

Funding

This work would not be possible without the funding provided by Audubon Center for Research of Endangered Species (ACRES) grant. This project/work used Genomics core facilities that are supported in part by COBRE (NIH8 1P30GM118430-02) and NORC (NIH 2P30DK072476) center grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Tyler Williams.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 35.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, S.T., Haas, C.A., Roberts, J.H. et al. Depauperate major histocompatibility complex variation in the endangered reticulated flatwoods salamander (Ambystoma bishopi). Immunogenetics 72, 263–274 (2020). https://doi.org/10.1007/s00251-020-01160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-020-01160-y

Keywords

Navigation