Skip to main content
Log in

Non-Hermitian topological Anderson insulators

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Non-Hermitian systems can exhibit exotic topological and localization properties. Here we elucidate the non-Hermitian effects on disordered topological systems using a nonreciprocal disordered Su-Schrieffer-Heeger model. We show that the non-Hermiticity can enhance the topological phase against disorders by increasing bulk gaps. Moreover, we uncover a topological phase which emerges under both moderate non-Hermiticity and disorders, and is characterized by localized insulating bulk states with a disorder-averaged winding number and zero-energy edge modes. Such topological phases induced by the combination of non-Hermiticity and disorders are dubbed non-Hermitian topological Anderson insulators. We reveal that the system has unique non-monotonous localization behavior and the topological transition is accompanied by an Anderson transition. These properties are general in other non-Hermitian models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    ADS  Google Scholar 

  2. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    ADS  Google Scholar 

  3. A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016), arXiv: 1603.03576.

    ADS  Google Scholar 

  4. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018), arXiv: 1705.01111.

    ADS  Google Scholar 

  5. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016), arXiv: 1505.03535.

    ADS  Google Scholar 

  6. D. W. Zhang, Y. Q. Zhu, Y. X. Zhao, H. Yan, and S. L. Zhu, Adv. Phys. 67, 253 (2018), arXiv: 1810.09228.

    ADS  Google Scholar 

  7. N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys. 91, 015005 (2019), arXiv: 1803.00249.

    ADS  Google Scholar 

  8. N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639 (2016), arXiv: 1607.03902.

    Google Scholar 

  9. L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon 8, 821 (2014), arXiv: 1408.6730.

    ADS  Google Scholar 

  10. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019), arXiv: 1802.04173.

    ADS  Google Scholar 

  11. S. D. Huber, Nat. Phys. 12, 621 (2016).

    Google Scholar 

  12. N. Y. Jia, C. Owens, A. Sommer, D. Schuster, and J. Simon, Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  13. V. V. Albert, L. I. Glazman, and L. Jiang, Phys. Rev. Lett. 114, 173902 (2015), arXiv: 1410.1243.

    ADS  MathSciNet  Google Scholar 

  14. S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Nat. Phys. 14, 925 (2018), arXiv: 1708.03647.

    Google Scholar 

  15. C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys. 1, 39 (2018), arXiv: 1705.01077.

    Google Scholar 

  16. M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg, J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and K. W. Lehnert, Phys. Rev. Lett. 113, 050402 (2014), arXiv: 1406.1817.

    ADS  Google Scholar 

  17. P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N. Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J. OMalley, D. Sank, A. Vainsencher, J. Wenner, T. White, A. Polkovnikov, A. N. Cleland, and J. M. Martinis, Nature 515, 241 (2014), arXiv: 1407.1585.

    ADS  Google Scholar 

  18. X. Tan, D. W. Zhang, Q. Liu, G. Xue, H. F. Yu, Y. Q. Zhu, H. Yan, S. L. Zhu, and Y. Yu, Phys. Rev. Lett. 120, 130503 (2018), arXiv: 1709.05765.

    ADS  Google Scholar 

  19. X. Tan, Y. X. Zhao, Q. Liu, G. Xue, H. F. Yu, Z. D. Wang, and Y. Yu, Phys. Rev. Lett. 122, 010501 (2019).

    ADS  Google Scholar 

  20. X. Tan, D. W. Zhang, Z. Yang, J. Chu, Y. Q. Zhu, D. Li, X. Yang, S. Song, Z. Han, Z. Li, Y. Dong, H. F. Yu, H. Yan, S. L. Zhu, and Y. Yu, Phys. Rev. Lett. 122, 210401 (2019), arXiv: 1906.01462.

    ADS  Google Scholar 

  21. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    ADS  Google Scholar 

  22. J. Li, R. L. Chu, J. K. Jain, and S. Q. Shen, Phys. Rev. Lett. 102, 136806 (2009), arXiv: 0811.3045.

    ADS  Google Scholar 

  23. C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło, and C. W. J. Beenakker, Phys. Rev. Lett. 103, 196805 (2009), arXiv: 0908.0881.

    ADS  Google Scholar 

  24. H. Jiang, L. Wang, Q. Sun, and X. C. Xie, Phys. Rev. B 80, 165316 (2009), arXiv: 0905.4550.

    ADS  Google Scholar 

  25. H. M. Guo, G. Rosenberg, G. Refael, and M. Franz, Phys. Rev. Lett. 105, 216601 (2010), arXiv: 1006.2777.

    ADS  Google Scholar 

  26. A. Altland, D. Bagrets, L. Fritz, A. Kamenev, and H. Schmiedt, Phys. Rev. Lett. 112, 206602 (2014), arXiv: 1402.1738.

    ADS  Google Scholar 

  27. I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan, Phys. Rev. Lett. 113, 046802 (2014), arXiv: 1311.5233.

    ADS  Google Scholar 

  28. P. Titum, N. H. Lindner, M. C. Rechtsman, and G. Refael, Phys. Rev. Lett. 114, 056801 (2015), arXiv: 1403.0592.

    ADS  Google Scholar 

  29. P. V. Sriluckshmy, K. Saha, and R. Moessner, Phys. Rev. B 97, 024204 (2018), arXiv: 1709.00254.

    ADS  Google Scholar 

  30. Z.-Q. Zhang, B.-L. Wu, J. Song, and H. Jiang, arXiv: 1906.04064v1.

  31. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    ADS  Google Scholar 

  32. E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway, Science 362, 929 (2018), arXiv: 1802.02109.

    ADS  Google Scholar 

  33. S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, Nature 560, 461 (2018).

    ADS  Google Scholar 

  34. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998), arXiv: physics/9712001.

    ADS  MathSciNet  Google Scholar 

  35. L. Feng, R. El-Ganainy, and L. Ge, Nat. Photon. 11, 752 (2017).

    ADS  Google Scholar 

  36. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys. 14, 11 (2018).

    Google Scholar 

  37. M. A. Miri, and A. Alù, Science 363, eaar7709 (2019).

    Google Scholar 

  38. M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 102, 065703 (2009), arXiv: 0807.2048.

    ADS  Google Scholar 

  39. J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, Phys. Rev. Lett. 115, 040402 (2015).

    ADS  Google Scholar 

  40. K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys. Rev. B 84, 205128 (2011), arXiv: 1107.2079.

    ADS  Google Scholar 

  41. Y. C. Hu, and T. L. Hughes, Phys. Rev. B 84, 153101 (2011), arXiv: 1107.1064.

    ADS  Google Scholar 

  42. B. Zhu, R. Lu, and S. Chen, Phys. Rev. A 89, 062102 (2014), arXiv: 1405.5591.

    ADS  Google Scholar 

  43. S. Malzard, C. Poli, and H. Schomerus, Phys. Rev. Lett. 115, 200402 (2015), arXiv: 1508.03985.

    ADS  Google Scholar 

  44. D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Phys. Rev. Lett. 118, 040401 (2017), arXiv: 1610.04029.

    ADS  MathSciNet  Google Scholar 

  45. Y. Xu, S. T. Wang, and L. M. Duan, Phys. Rev. Lett. 118, 045701 (2017), arXiv: 1611.02239.

    ADS  Google Scholar 

  46. X. Zhan, L. Xiao, Z. Bian, K. Wang, X. Qiu, B. C. Sanders, W. Yi, and P. Xue, Phys. Rev. Lett. 119, 130501 (2017), arXiv: 1709.10287.

    ADS  MathSciNet  Google Scholar 

  47. T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016), arXiv: 1603.05312.

    ADS  Google Scholar 

  48. S. Yao, and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018), arXiv: 1803.01876.

    ADS  Google Scholar 

  49. F. Song, S. Yao, and Z. Wang, arXiv:1905.02211v1.

  50. F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Phys. Rev. Lett. 121, 026808 (2018), arXiv: 1805.06492.

    ADS  Google Scholar 

  51. Y. Xiong, J. Phys. Commun. 2, 035043 (2018), arXiv: 1705.06039.

    Google Scholar 

  52. L. Jin, and Z. Song, Phys. Rev. B 99, 081103 (2019).

    ADS  Google Scholar 

  53. D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, arXiv: 1902.07217v2.

  54. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018), arXiv: 1802.07964.

    Google Scholar 

  55. S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802 (2018), arXiv: 1804.04672.

    ADS  Google Scholar 

  56. H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402 (2018), arXiv: 1706.07435.

    ADS  MathSciNet  Google Scholar 

  57. K. Takata, and M. Notomi, Phys. Rev. Lett. 121, 213902 (2018), arXiv: 1710.09169.

    ADS  Google Scholar 

  58. Y. Chen, and H. Zhai, Phys. Rev. B 98, 245130 (2018), arXiv: 1806.06566.

    ADS  Google Scholar 

  59. L. J. Lang, Y. Wang, H. Wang, and Y. D. Chong, Phys. Rev. B 98, 094307 (2018).

    ADS  Google Scholar 

  60. G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Science 359, eaar4003 (2018).

    Google Scholar 

  61. M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Science 359, eaar4005 (2018).

    Google Scholar 

  62. H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, Science 359, 1009 (2018), arXiv: 1709.03044.

    ADS  MathSciNet  Google Scholar 

  63. T. S. Deng, and W. Yi, Phys. Rev. B 100, 035102 (2019), arXiv: 1903.03811.

    ADS  Google Scholar 

  64. M. Ezawa, Phys. Rev. B 99, 201411 (2019), arXiv: 1810.04527.

    ADS  Google Scholar 

  65. K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, and M. Ueda, Nat. Commun. 10, 297 (2019), arXiv: 1804.04676.

    ADS  Google Scholar 

  66. A. Ghatak, and T. Das, J. Phys.-Condens. Matter 31, 263001 (2019), arXiv: 1902.07972.

    ADS  Google Scholar 

  67. K. Kawabata, Y. Ashida, H. Katsura, and M. Ueda, Phys. Rev. B 98, 085116 (2018), arXiv: 1801.00499.

    ADS  Google Scholar 

  68. J.-Q. Cai, Q.-Y. Yang, Z.-Y. Xue, M. Gong, G.-C. Guo, and Y. Hu, arXiv: 1812.02610v2.

  69. T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and F. Nori, Phys. Rev. Lett. 122, 076801 (2019), arXiv: 1810.04067.

    ADS  Google Scholar 

  70. C. H. Lee, L. Li, and J. Gong, Phys. Rev. Lett. 123, 016805 (2019), arXiv: 1810.11824.

    ADS  Google Scholar 

  71. T. Yoshida, K. Kudo, and Y. Hatsugai, arXiv: 1907.07596v2.

  72. D. J. Luitz, and F. Piazza, arXiv: 1906.02224v1.

  73. K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M. Ueda, and N. Kawakami, Phys. Rev. Lett. 123, 123601 (2019), arXiv: 1903.04720.

    ADS  Google Scholar 

  74. N. Hatano, and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996), arXiv: cond-mat/9603165.

    ADS  Google Scholar 

  75. N. Hatano, and D. R. Nelson, Phys. Rev. B 56, 8651 (1997), arXiv: cond-mat/9705290.

    ADS  Google Scholar 

  76. A. Carmele, M. Heyl, C. Kraus, and M. Dalmonte, Phys. Rev. B 92, 195107 (2015), arXiv: 1507.06117.

    ADS  Google Scholar 

  77. C. Mejía-Cortés, and M. I. Molina, Phys. Rev. A 91, 033815 (2015).

    ADS  Google Scholar 

  78. E. Levi, M. Heyl, I. Lesanovsky, and J. P. Garrahan, Phys. Rev. Lett. 116, 237203 (2016), arXiv: 1510.04634.

    ADS  Google Scholar 

  79. Q. B. Zeng, S. Chen, and R. Lu, Phys. Rev. A 95, 062118 (2017), arXiv: 1703.03580.

    ADS  Google Scholar 

  80. R. Hamazaki, K. Kawabata, and M. Ueda, arXiv: 1811.11319v2.

  81. V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Phys. Rev. B 97, 121401 (2018), arXiv: 1711.05235.

    ADS  Google Scholar 

  82. P. G. Harper, Proc. Phys. Soc. A 68, 874 (1955).

    ADS  Google Scholar 

  83. S. Aubry, and G. Andre, Ann. Israel Phys. Soc. 3, 133 (1980).

    Google Scholar 

  84. S. Longhi, Phys. Rev. Lett. 122, 237601 (2019), arXiv: 1905.09460.

    ADS  Google Scholar 

  85. H. Jiang, L. J. Lang, C. Yang, S. L. Zhu, and S. Chen, Phys. Rev. B 100, 054301 (2019), arXiv: 1901.09399.

    ADS  Google Scholar 

  86. Q.-B. Zeng, Y.-B. Yang, and Y. Xu, arXiv: 1901.08060v2.

  87. J. Hou, Y.-J. Wu, and C. Zhang, arXiv: 1906.03988v1.

  88. Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Phys. Rev. Lett. 109, 106402 (2012), arXiv: 1109.5983.

    ADS  Google Scholar 

  89. L. J. Lang, and S. Chen, Phys. Rev. B 86, 205135 (2012), arXiv: 1207.6192.

    ADS  Google Scholar 

  90. S. Ganeshan, K. Sun, and S. Das Sarma, Phys. Rev. Lett. 110, 180403 (2013), arXiv: 1301.5639.

    ADS  Google Scholar 

  91. A. Kitaev, Ann. Phys. 321, 2 (2006), arXiv: cond-mat/0506438.

    ADS  Google Scholar 

  92. E. Prodan, T. L. Hughes, and B. A. Bernevig, Phys. Rev. Lett. 105, 115501 (2010), arXiv: 1005.5148.

    ADS  Google Scholar 

  93. R. Bianco, and R. Resta, Phys. Rev. B 84, 241106 (2011), arXiv: 1111.5697.

    ADS  Google Scholar 

  94. Y. X. Zhao, Y. Lu, and H.-Z. Lu, arXiv: 1706.09783v1.

  95. J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Nat. Commun. 10, 855 (2019).

    ADS  Google Scholar 

  96. C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, Nat. Commun. 6, 6710 (2015), arXiv: 1407.3703.

    ADS  Google Scholar 

  97. S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Nat. Mater. 16, 433 (2017).

    ADS  Google Scholar 

  98. M. Pan, H. Zhao, P. Miao, S. Longhi, and L. Feng, Nat. Commun. 9, 1308 (2018).

    ADS  Google Scholar 

  99. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18, 783 (2019).

    ADS  Google Scholar 

  100. S. Longhi, EPL 106, 34001 (2014), arXiv: 1404.3662.

    ADS  Google Scholar 

  101. S. Longhi, D. Gatti, and G. Della Valle, Phys. Rev. B 92, 094204 (2015), arXiv: 1507.07651.

    ADS  Google Scholar 

  102. Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alù, Nat. Electron. 1, 178 (2018).

    Google Scholar 

  103. Y. Wang, L. J. Lang, C. H. Lee, B. Zhang, and Y. D. Chong, Nat. Commun. 10, 1102 (2019), arXiv: 1807.11163.

    ADS  Google Scholar 

  104. T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, arXiv: 1907.11562v1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan-Wei Zhang or Shi-Liang Zhu.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301800), the National Natural Science Foundation of China (Grant Nos. 11704367, 11904109, and 91636218), the National Natural Science Foundation of China (Grant Nos. U1830111, and U1801661), the Key-Area Research and Development Program of GuangDong Province (Grant No. 2019B030330001), and the Key Program of Science and Technology of Guangzhou (Grant No. 201804020055).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DW., Tang, LZ., Lang, LJ. et al. Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron. 63, 267062 (2020). https://doi.org/10.1007/s11433-020-1521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1521-9

Keywords

Navigation