Skip to main content

Advertisement

Log in

CORM-2-Solid Lipid Nanoparticles Maintain Integrity of Blood-Spinal Cord Barrier After Spinal Cord Injury in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 08 December 2020

This article has been updated

Abstract

Spinal cord injury (SCI) is a devastating condition of the central nervous system that can lead to permanent motor and sensory deficits. Carbon monoxide–releasing molecule-2 (CORM-2) has been shown to have anti-inflammatory, anti-apoptotic, and angiogenic properties that may be useful for the treatment of SCI. However, it has a short carbon monoxide (CO) release half-life (approximately 1 min). To address this challenge, we developed a CORM-2-incorporated solid lipid nanoparticle (CORM-2-SLN) and evaluated its ameliorating effects for preventing blood-spinal cord barrier (BSCB) disruption and endothelial cell death following SCI. After a moderate compression injury of the spinal cord (compression with a 35-g impounder for 5 min), groups of rats were treated with a CORM-2-solution and CORM-2-SLNs at an equal dose of 10 mg/kg each via an intraperitoneal injection for 8 consecutive days. Behavior analysis was performed and animals were later sacrificed at different time points and evaluated for whether the CORM-2-SLNs prevented BSCB disruption and rescued endothelial cell damage following SCI. The CORM-2-SLN-treated group showed significantly diminished extravasation of Evans Blue dye with enhanced expression of tight junction proteins following SCI. Likewise, significantly diminished endothelial cell markers after SCI were optimally stabilized at 21 days. Additionally, lipopolysaccharide (LPS)-induced loss of tight junction integrity was significantly preserved after CORM-2-SLN treatment in human cerebral microvascular endothelial cell line (hCMEC/D3). Clinically, CORM-2-SLNs were associated with a significantly improved functional recovery, as compared with the CORM-2-solution. CORM-2-SLNs may help potentially to maintain BSCB integrity following SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 08 December 2020

    A Correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s12035-020-02233-5</RefSource><RefTarget Address="10.1007/s12035-020-02233-5" TargetType="DOI"/></ExternalRef>

References

  1. Ulndreaj A, Badner A, Fehlings MG (2017) Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Research 6

  2. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: A comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. https://doi.org/10.1016/j.pneurobio.2013.11.002

    Article  PubMed  Google Scholar 

  3. Wyndaele M, Wyndaele JJ (2006) Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey? Spinal Cord 44(9):523–529. https://doi.org/10.1038/sj.sc.3101893

    Article  CAS  PubMed  Google Scholar 

  4. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 367(9524):1747–1757. https://doi.org/10.1016/S0140-6736(06)68770-9

    Article  PubMed  Google Scholar 

  5. Kumar H, Jo M-J, Choi H, Muttigi MS, Shon S, Kim B-J, Lee S-H, Han I-B (2018) Matrix Metalloproteinase-8 inhibition prevents disruption of blood–spinal cord barrier and attenuates inflammation in rat model of spinal cord injury. Mol Neurobiol 55(3):2577–2590

    CAS  PubMed  Google Scholar 

  6. Kumar H, Choi H, Jo M-J, Joshi HP, Muttigi M, Bonanomi D, Kim SB, Ban E et al (2018) Neutrophil elastase inhibition effectively rescued angiopoietin-1 decrease and inhibits glial scar after spinal cord injury. Acta Neuropathol Commu 6(1):73

    Google Scholar 

  7. Jo M-J, Kumar H, Joshi HP, Choi H, Ko W-K, Kim J, Hwang SS, Park SY et al (2018) Oral administration of α-Asarone promotes functional recovery in rats with spinal cord injury. Front Pharmacol 9:445

    PubMed  PubMed Central  Google Scholar 

  8. Han I-B, Thakor DK, Ropper AE, Yu D, Wang L, Kabatas S, Zeng X, Kim S-W, Zafonte RD, Teng YD (2019) Physical impacts of PLGA scaffolding on hMSCs: Recovery neurobiology insight for implant design to treat spinal cord injury. Experimental neurology:112980

  9. Kraus KH (1996) The pathophysiology of spinal cord injury and its clinical implications. In: Seminars in veterinary medicine and surgery (small animal). vol 4. pp 201–207

  10. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5(4):407–413

    CAS  PubMed  Google Scholar 

  11. Abbott NJ (2002) Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 200(6):629–638

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JY, Kim HS, Choi HY, Oh TH, Yune TY (2012) Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood–spinal cord barrier after spinal cord injury. Brain 135(8):2375–2389

    PubMed  Google Scholar 

  13. Lee JY, Kim HS, Choi HY, Oh TH, Ju BG, Yune TY (2012) Valproic acid attenuates blood–spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem 121(5):818–829

    CAS  PubMed  Google Scholar 

  14. Zhou Y, Zheng B, Ye L, Zhang H, Zhu S, Zheng X, Xia Q, He Z et al (2016) Retinoic acid prevents disruption of blood-spinal cord barrier by inducing autophagic flux after spinal cord injury. Neurochem Res 41(4):813–825

    CAS  PubMed  Google Scholar 

  15. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24(9):2182–2190

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ et al (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20(10):1017–1027

    PubMed  Google Scholar 

  17. Kwon BK, Mann C, Sohn HM, Hilibrand AS, Phillips FM, Wang JC, Fehlings MG (2008) Hypothermia for spinal cord injury. Spine J 8(6):859–874

    PubMed  Google Scholar 

  18. Sharma HS (2005) Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des 11(11):1353–1389

    CAS  PubMed  Google Scholar 

  19. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bregman BS, McAtee M, Dai HN, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148(2):475–494

    CAS  PubMed  Google Scholar 

  21. Sharma H, Olsson Y, Dey P (1990) Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes. Neuroscience 36(3):725–730

    CAS  PubMed  Google Scholar 

  22. Mahan VL (2012) Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide. Medical gas research 2(1):32

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Duckers HJ, Boehm M, True AL, Yet S-F, San H, Park JL, Webb RC, Lee M-E et al (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7(6):693–698

    CAS  PubMed  Google Scholar 

  24. Foresti R, Clark JE, Green CJ, Motterlini R (1997) Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells involvement of superoxide and peroxynitrite anions. J Biol Chem 272(29):18411–18417

    CAS  PubMed  Google Scholar 

  25. Tschugguel W, Stonek F, Zhegu Z, Dietrich W, Schneeberger C, Stimpfl T, Waldhoer T, Vycudilik W et al (2001) Estrogen increases endothelial carbon monoxide, heme oxygenase 2, and carbon monoxide-derived cGMP by a receptor-mediated system. The Journal of Clinical Endocrinology & Metabolism 86(8):3833–3839

    CAS  Google Scholar 

  26. Tulis DA, Durante W, Liu X, Evans AJ, Peyton KJ, Schafer AI (2001) Adenovirus-mediated heme oxygenase-1 gene delivery inhibits injury-induced vascular neointima formation. Circulation 104(22):2710–2715

    CAS  PubMed  Google Scholar 

  27. Akamatsu Y, Haga M, Tyagi S, Yamashita K, Graça-Souza AV, Ollinger R, Czismadia E, May GA et al (2004) Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemia reperfusion injury. FASEB J 18(6):771–772

    CAS  PubMed  Google Scholar 

  28. de Rivero Vaccari JP (2019) Carbon monoxide releasing molecule-3 inhibits inflammasome activation: A potential therapy for spinal cord injury. EBioMedicine 40:17–18

    PubMed  PubMed Central  Google Scholar 

  29. Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y, Wu Y, Wang S et al (2019) Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 40:643–654

    PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Tao A, Lan T, Cepinskas G, Kao R, Martin CM, Rui T (2017) Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Res Cardiol 112(2):16

    PubMed  Google Scholar 

  31. Joshi HP, Kim SB, Kim S, Kumar H, Jo M-J, Choi H, Kim J, Kyung JW, Sohn S, Kim K-T (2019) Nanocarrier-mediated Delivery of CORM-2 Enhances Anti-allodynic and Anti-hyperalgesic Effects of CORM-2. Molecular neurobiology:1–16

  32. Choi YK, Maki T, Mandeville ET, Koh S-H, Hayakawa K, Arai K, Kim Y-M, Whalen MJ et al (2016) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med 22(11):1335

    CAS  PubMed  Google Scholar 

  33. Motterlini R, Haas B, Foresti R (2012) Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs). Med Gas Res 2(1):28. https://doi.org/10.1186/2045-9912-2-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adach W, Olas B (2017) The role of CORM-2 as a modulator of oxidative stress and hemostatic parameters of human plasma in vitro. PLoS One 12(9):e0184787. https://doi.org/10.1371/journal.pone.0184787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motterlini R, Mann BE, Foresti R (2005) Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 14(11):1305–1318

    CAS  PubMed  Google Scholar 

  36. Qureshi OS, Zeb A, Akram M, Kim M-S, Kang J-H, Kim H-S, Majid A, Han I et al (2016) Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery. Eur J Pharm Biopharm 108:187–195

    CAS  PubMed  Google Scholar 

  37. Qureshi OS, Kim H-S, Zeb A, Choi J-S, Kim H-S, Kwon J-E, Kim M-S, Kang J-H et al (2017) Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. J Microencapsul 34(3):250–261

    CAS  PubMed  Google Scholar 

  38. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ (2002) Carbon monoxide-releasing molecules: Characterization of biochemical and vascular activities. Circ Res 90(2):e17–e24

    CAS  PubMed  Google Scholar 

  39. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9(9):728

    CAS  PubMed  Google Scholar 

  40. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian G-F et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci 106(30):12489–12493

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    CAS  PubMed  Google Scholar 

  42. Jin L, Nation RL, Li J, Nicolazzo JA (2013) Species-dependent blood-brain barrier disruption of lipopolysaccharide: Amelioration by colistin in vitro and in vivo. Antimicrob Agents Chemother 57(9):4336–4342

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen J-X, Chen Y, DeBusk L, Lin W, Lin PC (2004) Dual functional roles of Tie-2/angiopoietin in TNF-α-mediated angiogenesis. Am J Phys Heart Circ Phys 287(1):H187–H195

    CAS  Google Scholar 

  44. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    CAS  PubMed  Google Scholar 

  45. Zhou C, Shi X, Huang H, Zhu Y, Wu Y (2014) Montelukast attenuates neuropathic pain through inhibiting p38 mitogen-activated protein kinase and nuclear factor-kappa B in a rat model of chronic constriction injury. Anesth Analg 118(5):1090–1096

    CAS  PubMed  Google Scholar 

  46. Hervera A, Leánez S, Motterlini R, Pol O (2013) Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of μ-opioid receptors during neuropathic pain. Anesthesiology: The Journal of the American Society of Anesthesiologists 118(5):1180–1197

    CAS  Google Scholar 

  47. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA et al (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428. https://doi.org/10.1038/74680

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Shan P, Alam J, Fu XY, Lee PJ (2005) Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 280(10):8714–8721. https://doi.org/10.1074/jbc.M408092200

    Article  CAS  PubMed  Google Scholar 

  49. Nakao A, Sugimoto R, Billiar TR, McCurry KR (2009) Therapeutic antioxidant medical gas. J Clin Biochem Nutr 44(1):1–13. https://doi.org/10.3164/jcbn.08-193R

    Article  CAS  PubMed  Google Scholar 

  50. Zhang P, Zhang L, Zhu L, Chen F, Zhou S, Tian T, Zhang Y, Jiang X et al (2015) The change tendency of PI3K/Akt pathway after spinal cord injury. Am J Transl Res 7(11):2223

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Raghupathi R, Muir JK, Fulp CT, Pittman RN, McIntosh TK (2003) Acute activation of mitogen-activated protein kinases following traumatic brain injury in the rat: Implications for posttraumatic cell death. Exp Neurol 183(2):438–448

    CAS  PubMed  Google Scholar 

  52. Nakahara S, Yone K, Sakou T, Wada S, Nagamine T, Niiyama T, Ichijo H (1999) Induction of apoptosis signal regulating kinase 1 (ASK1) after spinal cord injury in rats: Possible involvement of ASK1-JNK and-p38 pathways in neuronal apoptosis. J Neuropathol Exp Neurol 58(5):442–450

    CAS  PubMed  Google Scholar 

  53. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE et al (2004) Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. American Journal of Physiology-Renal Physiology 287(5):F979–F989

    PubMed  Google Scholar 

  54. Nakao A, Kimizuka K, Stolz DB, Neto JS, Kaizu T, Choi AM, Uchiyama T, Zuckerbraun BS et al (2003) Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol 163(4):1587–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89(6):911–920

    CAS  PubMed  Google Scholar 

  56. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596. https://doi.org/10.1038/nm.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fan ZK, Lv G, Wang YF, Li G, Yu DS, Wang YS, Zhang YQ, Mei XF et al (2013) The protective effect of salvianolic acid B on blood-spinal cord barrier after compression spinal cord injury in rats. J Mol Neurosci 51(3):986–993. https://doi.org/10.1007/s12031-013-0083-8

    Article  CAS  PubMed  Google Scholar 

  58. Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG (2014) Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 31(6):541–552. https://doi.org/10.1089/neu.2013.3034

    Article  PubMed  PubMed Central  Google Scholar 

  59. Whetstone WD, Hsu JYC, Eisenberg M, Werb Z, Noble-Haeusslein LJ (2003) Blood-spinal cord barrier after spinal cord injury: Relation to revascularization and wound healing. J Neurosci Res 74(2):227–239

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood–spinal cord barrier: Morphology and clinical implications. Ann Neurol 70(2):194–206

    PubMed  Google Scholar 

  61. Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T et al (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12(12):1380–1389. https://doi.org/10.1038/nm1505

    Article  CAS  PubMed  Google Scholar 

  62. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–13016. https://doi.org/10.1523/JNEUROSCI.4323-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshihara T, Ohta M, Itokazu Y, Matsumoto N, Dezawa M, Suzuki Y, Taguchi A, Watanabe Y et al (2007) Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma 24(6):1026–1036. https://doi.org/10.1089/neu.2007.132R

    Article  PubMed  Google Scholar 

  64. Hansen TM, Moss AJ, Brindle NP (2008) Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke. Curr Neurovasc Res 5(4):236–245

    CAS  PubMed  Google Scholar 

  65. Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C et al (2015) Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348(6232):347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Korea Healthcare Technology Research & Development Project, Ministry of Health and Welfare, Republic of Korea (HR16C0002), and the National Research Foundation of Korea (NRF-2017R1C1B1011397, NRF-2017R1A2B4006458).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed and critically reviewed and approved the manuscript. IBH and HK conceived and directed the project. IBH, HK, HPJ designed the whole experimental plan. HPJ, UYC, YCL, HC, JK, JWK, and YCK performed the experiment. SS and KK analyzed the data and interpreted the result. JKK formulate and characterized the in vitro CO release properties of CORM-2-SLNs. HPJ, UYC, and IBH prepared the manuscript.

Corresponding author

Correspondence to In-Bo Han.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, H.P., Kumar, H., Choi, U.Y. et al. CORM-2-Solid Lipid Nanoparticles Maintain Integrity of Blood-Spinal Cord Barrier After Spinal Cord Injury in Rats. Mol Neurobiol 57, 2671–2689 (2020). https://doi.org/10.1007/s12035-020-01914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01914-5

Keywords

Navigation