Skip to main content
Log in

High Effective Composite RGO/TiO2 Photocatalysts to Degrade Isopropanol Pollutant in Semiconductor Industry

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This research focused on the photodegradation of aqueous isopropanol in the presence of RGO/TiO2 photocatalysts, which were prepared by the hydrothermal method. Under the irradiation of the simulated sunlight AM1.5G, the photocatalytic activity of isopropanol degradation was studied. In addition, various initial isopropanol concentrations (20, 40, 60, 80, and 100 ppm) were employed in the photocatalytic reaction. P25RGO-0.01% was found to give the highest isopropanol removal of 92.24% at the initial isopropanol concentrations of 20 ppm. Such optimal loading of reduced graphene oxide can act as an electron trapping to suppress the possibility of the recombination of electron–hole pairs. Additionally, acetone was verified to be one of the main in1termediate products. Moreover, it was found that the acidic condition was advantageous to photodegrade isopropanol because of favorable conditions for forming hydroxyl radicals and superoxide radicals. The recyclability test was also verified by three sequent reactions and shown negligible decay of catalysts. This research demonstrated the feasibility of using photocatalysis to remove isopropanol wastewater in sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. de Luna MDG, Warmadewanthi LJC (2009) Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer. Colloids Surf A 347(1):64–68. https://doi.org/10.1016/j.colsurfa.2008.12.006

    Article  CAS  Google Scholar 

  2. Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for organic wastewater. Water Treatment 11:250–286

    Google Scholar 

  3. Kamarden H, Hassan MAA, Noor ZZ, Ibrahim RR, Evuti AM (2014) Effect of temperature and air flow rate on Xylene removal from wastewater using packed column air stripper. Jurnal Teknologi. https://doi.org/10.1515/revce-2014-0003

    Article  Google Scholar 

  4. Jungclaus G, Avila V, Hites R (1978) Organic compounds in an industrial wastewater: a case study of their environmental impact. Environ Sci Technol 12(1):88–96

    Article  CAS  Google Scholar 

  5. Lin SH, Jiang CD (2003) Fenton oxidation and sequencing batch reactor (SBR) treatments of high-strength semiconductor wastewater. Desalination 154(2):107–116

    Article  CAS  Google Scholar 

  6. Bermejo MD, Cocero MJ (2006) Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. J Hazard Mater 137(2):965–971. https://doi.org/10.1016/j.jhazmat.2006.03.033

    Article  CAS  Google Scholar 

  7. Xiao Y, Xu H-Y, Xie H-M, Yang Z-H, Zeng G-M (2015) Comparison of the treatment fo isopropyl alcohol wastewater from silicon solar cell industry using SBR and SBBR. Int J Environ Sci Technol 12(7):2381–2388

    Article  CAS  Google Scholar 

  8. Ahmed S, Rasul M, Martens WN, Brown R, Hashib M (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261(1–2):3–18

    Article  CAS  Google Scholar 

  9. Ahmed S, Rasul M, Martens WN, Brown R, Hashib M (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215(1–4):3–29

    Article  CAS  Google Scholar 

  10. Chan SHS, Yeong WuT, Juan JC, Teh CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86(9):1130–1158

    Article  CAS  Google Scholar 

  11. Yang Q, Wang S, Chen F, Luo K, Sun J, Gong C, Yao F, Wang X, Wu J, Li X (2017) Enhanced visible-light-driven photocatalytic removal of refractory pollutants by Zn/Fe mixed metal oxide derived from layered double hydroxide. Catal Commun 99:15–19

    Article  Google Scholar 

  12. Chu M, Hu K, Wang J, Liu Y, Ali S, Qin C, Jing L (2019) Synthesis of g-C3N4-based photocatalysts with recyclable feature for efficient 2, 4-dichlorophenol degradation and mechanisms. Appl Catal B 243:57–65

    Article  CAS  Google Scholar 

  13. Hu J, Zhang P, An W, Liu L, Liang Y, Cui W (2019) In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl Catal B 245:130–142

    Article  CAS  Google Scholar 

  14. Huang C-W, Nguyen V-H, Zhou S-R, Hsu S-Y, Tan J-X, Wu KCW (2020) Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustain Energy Fuels 4(2):504–521. https://doi.org/10.1039/C9SE00972H

    Article  CAS  Google Scholar 

  15. Wu Z, Yuan X, Zhang J, Wang H, Jiang L, Zeng G (2017) Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem 9(1):41–64

    Article  CAS  Google Scholar 

  16. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A 359(1–2):25–40

    Article  CAS  Google Scholar 

  17. Zangeneh H, Zinatizadeh A, Habibi M, Akia M, Isa MH (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36

    Article  CAS  Google Scholar 

  18. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. https://doi.org/10.1039/B800489G

    Article  CAS  Google Scholar 

  19. Konstantinou I, Albanis T (2004) TiO2-assisted photocatalytic degradation of Azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  20. Huang CW, Wu MC Photocatalytic Degradation of Methylene Blue by UV‐assistant TiO2 and natural sericite composites. J Chem Technol Biotechnol

  21. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241

    Article  CAS  Google Scholar 

  22. Gomes J, Lopes A, Bednarczyk K, Gmurek M, Stelmachowski M, Zaleska-Medynska A, Quinta-Ferreira M, Costa R, Quinta-Ferreira R, Martins R (2017) Environmental preservation of emerging parabens contamination: effect of Ag and Pt loading over the catalytic efficiency of TiO2 during photocatalytic ozonation. Energy Procedia 136:270–276

    Article  CAS  Google Scholar 

  23. Abdelraheem WH, Patil MK, Nadagouda MN, Dionysiou DD (2019) Hydrothermal synthesis of photoactive nitrogen-and boron-codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl Catal B 241:598–611

    Article  CAS  Google Scholar 

  24. Chowdhury S, Balasubramanian R (2014) Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review. Appl Catal B 160–161:307–324. https://doi.org/10.1016/j.apcatb.2014.05.035

    Article  CAS  Google Scholar 

  25. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491. https://doi.org/10.1021/nn800251f

    Article  CAS  Google Scholar 

  26. Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527. https://doi.org/10.1021/jz900265j

    Article  CAS  Google Scholar 

  27. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12(48):6640–6696. https://doi.org/10.1002/smll.201600382

    Article  CAS  Google Scholar 

  28. Sang Y, Zhao Z, Tian J, Hao P, Jiang H, Liu H, Claverie JP (2014) Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small 10(18):3775–3782. https://doi.org/10.1002/smll.201303489

    Article  CAS  Google Scholar 

  29. Cao S, Yu J (2016) Carbon-based H2-production photocatalytic materials. J Photochem Photobiol C 27:72–99. https://doi.org/10.1016/j.jphotochemrev.2016.04.002

    Article  CAS  Google Scholar 

  30. Rajput S, Chen MX, Liu Y, Li YY, Weinert M, Li L (2013) Spatial fluctuations in barrier height at the graphene–silicon carbide Schottky junction. Nat Commun 4(1):2752. https://doi.org/10.1038/ncomms3752

    Article  CAS  Google Scholar 

  31. Hareesh K, Joshi R, Dahiwale S, Bhoraskar V, Dhole S (2016) Synthesis of Ag-reduced graphene oxide nanocomposite by gamma radiation assisted method and its photocatalytic activity. Vacuum 124:40–45

    Article  CAS  Google Scholar 

  32. Qian W, Greaney PA, Fowler S, Chiu S-K, Goforth AM, Jiao J (2014) Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment. ACS Sustain Chem Eng 2(7):1802–1810

    Article  CAS  Google Scholar 

  33. Nguyen DCT, Cho K-Y, Oh W-C (2017) Synthesis of frost-like CuO combined graphene-TiO2 by self-assembly method and its high photocatalytic performance. Appl Surf Sci 412:252–261

    Article  CAS  Google Scholar 

  34. Wang W, Li Y, Kang Z, Wang F, Jimmy CY (2016) A NIR-driven photocatalyst based on α-NaYF4: Yb, Tm@ TiO2 core–shell structure supported on reduced graphene oxide. Appl Catal B 182:184–192

    Article  CAS  Google Scholar 

  35. Alam U, Fleisch M, Kretschmer I, Bahnemann D, Muneer M (2017) One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl Catal B 218:758–769

    Article  CAS  Google Scholar 

  36. Yin L, Zhao M, Hu H, Ye J, Wang D (2017) Synthesis of graphene/tourmaline/TiO2 composites with enhanced activity for photocatalytic degradation of 2-propanol. Chin J Catal 38(8):1307–1314

    Article  CAS  Google Scholar 

  37. Park J-G, Lee S-H, Ryu J-S, Hong Y-K, Kim T-G, Busnaina AA (2006) Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. J Electrochem Soc 153(9):G811–G814

    Article  CAS  Google Scholar 

  38. Wang F, Zhang K (2011) Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A 345(1):101–107. https://doi.org/10.1016/j.molcata.2011.05.026

    Article  CAS  Google Scholar 

  39. Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B 132–133:452–459. https://doi.org/10.1016/j.apcatb.2012.12.009

    Article  CAS  Google Scholar 

  40. Shalaby A, Nihtianova D, Markov P, Staneva A, Iordanova R, Dimitriev Y (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg Chem Commun 47:291–295

    Google Scholar 

  41. Yu J, Yu H, Cheng B, Zhou M, Zhao X (2006) Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J Mol Catal A 253(1–2):112–118

    Article  CAS  Google Scholar 

  42. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  Google Scholar 

  43. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2(6):949–956. https://doi.org/10.1021/cs200621c

    Article  CAS  Google Scholar 

  44. Ding H, Zhang S, Chen J-T, Hu X-P, Du Z-F, Qiu Y-X, Zhao D-L (2015) Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films 584:29–36. https://doi.org/10.1016/j.tsf.2015.02.038

    Article  CAS  Google Scholar 

  45. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2−graphene truly different from other TiO2−carbon composite materials? ACS Nano 4(12):7303–7314. https://doi.org/10.1021/nn1024219

    Article  CAS  Google Scholar 

  46. Den W, Fu-Hsiang K, Tiao-Yuan H (2002) Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation. IEEE Trans Semicond Manuf 15(4):540–551. https://doi.org/10.1109/TSM.2002.804903

    Article  Google Scholar 

  47. Lin SH, Kiang CD (2003) Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. J Hazard Mater 97(1):159–171. https://doi.org/10.1016/S0304-3894(02)00257-1

    Article  CAS  Google Scholar 

  48. Chen S, Liu Y (2007) Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 67(5):1010–1017. https://doi.org/10.1016/j.chemosphere.2006.10.054

    Article  CAS  Google Scholar 

  49. Henderson MA (2008) Effect of coadsorbed water on the photodecomposition of acetone on TiO2(110). J Catal 256(2):287–292. https://doi.org/10.1016/j.jcat.2008.03.020

    Article  CAS  Google Scholar 

  50. Coronado JM, Kataoka S, Tejedor-Tejedor I, Anderson MA (2003) Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species. J Catal 219(1):219–230. https://doi.org/10.1016/S0021-9517(03)00199-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Science and Technology (MOST), Taiwan, for the financial support under grant number MOST 105-2221-E-002-206-MY3. The Academia Sinica of Taiwan also provides partial support under project AS-KPQ-106-DDPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. S. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YT., Huang, CW., Wang, YH. et al. High Effective Composite RGO/TiO2 Photocatalysts to Degrade Isopropanol Pollutant in Semiconductor Industry. Top Catal 63, 1240–1250 (2020). https://doi.org/10.1007/s11244-020-01263-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01263-6

Keywords

Navigation