Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cobaltaelectro-catalyzed C–H activation for resource-economical molecular syntheses

Abstract

The direct cleavage of otherwise inert C–H bonds has emerged as a sustainable approach for organic synthesis; in contrast to other approaches, these reactions result in the formation of fewer undesired by-products and do not require pre-functionalization steps. In recent years, oxidative C–H/N–H alkyne annulations and C–H oxygenations were realized by 3d metals. Unfortunately, most of these reactions require stoichiometric amounts of often toxic chemical oxidants. This protocol provides a general method for cobaltaelectro-catalyzed C–H activations of benzamides. Here, anodic oxidation obviates the need for a chemical oxidant and uses 10–20% of a more environmentally benign, inexpensive catalyst. We outline a detailed and precise description of the designed electrolytic cell for metallaelectrocatalysis, including readily available electrode materials and electrode holders. The custom-made device is further compared with the commercially available and standardized ElectraSyn 2.0 electrochemistry kit. As example applications of this approach, we describe cobaltaelectro-catalyzed C–H activation protocols for the direct C–H oxygenation of benzamides and resource-economical synthesis of isoquinolones. The cobaltaelectrocatalysis setup and reaction take about 17 h, while an additional 5 h have to be anticipated for workup and chromatographic purification. The methods described herein feature broad functional group tolerance, operational simplicity, low waste-product formation and an overall exceptional level of resource economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Cobaltaelectrocatalysis.
Fig. 3: Design and dimensions of the reaction vessel cap.
Fig. 4: Preparation and assembly of the electrodes.
Fig. 5: Overview of the setup for cobaltaelectrocatalysis.
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and previously published reports (https://doi.org/10.1021/jacs.7b11025 and https://doi.org/10.1002/anie.201712647). Additional data are available from the corresponding author on request.

References

  1. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    CAS  Google Scholar 

  3. Dey, A., Sinha, S. K., Achar, T. K. & Maiti, D. Accessing remote meta- and para-C(sp2)–H bonds with covalently attached directing groups. Angew. Chem. Int. Ed. 58, 10820–10843 (2019).

    CAS  Google Scholar 

  4. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    CAS  PubMed  Google Scholar 

  5. Ma, W., Gandeepan, P., Li, J. & Ackermann, L. Recent advances in positional-selective alkenylations: removable guidance for twofold C–H activation. Org. Chem. Front. 4, 1435–1467 (2017).

    CAS  Google Scholar 

  6. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    CAS  PubMed  Google Scholar 

  7. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    CAS  PubMed  Google Scholar 

  8. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. 57, 14700–14717 (2018).

    CAS  Google Scholar 

  11. Noisier, A. F. M. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

    CAS  PubMed  Google Scholar 

  12. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    CAS  PubMed  Google Scholar 

  13. Schipper, D. J. & Fagnou, K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem. Mater. 23, 1594–1600 (2011).

    CAS  Google Scholar 

  14. Seki, M. A new catalytic system for Ru-catalyzed C–H arylation reactions and its application in the practical syntheses of pharmaceutical agents. Org. Process Res. Dev. 20, 867–877 (2016).

    CAS  Google Scholar 

  15. Ackermann, L. Robust ruthenium(II)-catalyzed C–H arylations: carboxylate assistance for the efficient synthesis of angiotensin-II-receptor blockers. Org. Process Res. Dev. 19, 260–269 (2015).

    CAS  Google Scholar 

  16. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  Google Scholar 

  17. Meyer, T. H., Finger, L. H., Gandeepan, P. & Ackermann, L. Resource economy by metallaelectrocatalysis: merging electrochemistry and C–H activation. Trends Chem. 1, 63–76 (2019).

    Google Scholar 

  18. Dwivedi, V., Kalsi, D. & Sundararaju, B. Electrochemical-/photoredox aspects of transition metal-catalyzed directed C–H bond activation. ChemCatChem 11, 5160–5187 (2019).

    CAS  Google Scholar 

  19. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. 57, 4149–4155 (2018).

    CAS  Google Scholar 

  20. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    CAS  Google Scholar 

  21. Tang, S., Liu, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4, 27–45 (2018).

    CAS  Google Scholar 

  22. Sauermann, N., Meyer, T. H., Qiu, Y. & Ackermann, L. Electrocatalytic C–H activation. ACS Catal. 8, 7086–7103 (2018).

    CAS  Google Scholar 

  23. Sauermann, N., Meyer, T. H. & Ackermann, L. Electrochemical cobalt-catalyzed C–H activation. Chem. Eur. J. 24, 16209–16217 (2018).

    CAS  PubMed  Google Scholar 

  24. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    CAS  PubMed  Google Scholar 

  25. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    PubMed  Google Scholar 

  26. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, C., Fang, P. & Mei, T.-S. Recent advances in C–H functionalization using electrochemical transition metal catalysis. ACS Catal. 8, 7179–7189 (2018).

    CAS  Google Scholar 

  28. Yang, Q.-L., Fang, P. & Mei, T.-S. Recent advances in organic electrochemical C–H functionalization. Chin. J. Chem. 36, 338–352 (2018).

    CAS  Google Scholar 

  29. Tang, S., Zeng, L. & Lei, A. Oxidative R1–H/R2–H cross-coupling with hydrogen evolution. J. Am. Chem. Soc. 140, 13128–13135 (2018).

    CAS  PubMed  Google Scholar 

  30. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou, Z.-W., Mao, Z.-Y. & Xu, H.-C. Recent progress on the synthesis of (aza)indoles through oxidative alkyne annulation reactions. Synlett 28, 1867–1872 (2017).

    CAS  Google Scholar 

  32. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    CAS  PubMed  Google Scholar 

  33. Jutand, A. Contribution of electrochemistry to organometallic catalysis. Chem. Rev. 108, 2300–2347 (2008).

    CAS  PubMed  Google Scholar 

  34. Gandeepan, P. et al. 3d transition metals for C–H activation. Chem. Rev. 119, 2192–2452 (2019).

    CAS  PubMed  Google Scholar 

  35. Loup, J., Dhawa, U., Pesciaioli, F., Wencel-Delord, J. & Ackermann, L. Enantioselective C–H activation with earth-abundant 3d transition metals. Angew. Chem. Int. Ed. 58, 12803–12818 (2019).

    CAS  Google Scholar 

  36. Khake, S. M. & Chatani, N. Chelation-assisted nickel-catalyzed C–H functionalizations. Trends Chem. 1, 524–539 (2019).

    Google Scholar 

  37. Zhu, X. & Chiba, S. Copper-catalyzed oxidative carbon–heteroatom bond formation: a recent update. Chem. Soc. Rev. 45, 4504–4523 (2016).

    CAS  PubMed  Google Scholar 

  38. Liu, W. & Ackermann, L. Manganese-catalyzed C–H activation. ACS Catal. 6, 3743–3752 (2016).

    CAS  Google Scholar 

  39. Fürstner, A. Iron catalysis in organic synthesis: a critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci. 2, 778–789 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Kalsi, D., Dutta, S., Barsu, N., Rueping, M. & Sundararaju, B. Room-temperature C–H bond functionalization by merging cobalt and photoredox catalysis. ACS Catal. 8, 8115–8120 (2018).

    CAS  Google Scholar 

  41. Grigorjeva, L. & Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed C(sp2)–H bond alkenylation by alkynes. Angew. Chem. Int. Ed. 53, 10209–10212 (2014).

    CAS  Google Scholar 

  42. Gao, K. & Yoshikai, N. Low-valent cobalt catalysis: new opportunities for C–H functionalization. Acc. Chem. Res. 47, 1208–1219 (2014).

    CAS  PubMed  Google Scholar 

  43. Song, W. & Ackermann, L. Cobalt-catalyzed direct arylation and benzylation by C–H/C–O cleavage with sulfamates, carbamates, and phosphates. Angew. Chem. Int. Ed. 51, 8251–8254 (2012).

    CAS  Google Scholar 

  44. Sauermann, N., Meyer, T. H., Tian, C. & Ackermann, L. Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J. Am. Chem. Soc. 139, 18452–18455 (2017).

    CAS  PubMed  Google Scholar 

  45. Sauermann, N., Mei, R. & Ackermann, L. Electrochemical C–H amination by cobalt catalysis in a renewable solvent. Angew. Chem. Int. Ed. 57, 5090–5094 (2018).

    CAS  Google Scholar 

  46. Gao, X., Wang, P., Zeng, L., Tang, S. & Lei, A. Cobalt(II)-catalyzed electrooxidative C–H amination of arenes with alkylamines. J. Am. Chem. Soc. 140, 4195–4199 (2018).

    CAS  PubMed  Google Scholar 

  47. Tian, C., Dhawa, U., Struwe, J. & Ackermann, L. Cobaltaelectro-catalyzed C–H acyloxylation. Chin. J. Chem. 37, 552–556 (2019).

    CAS  Google Scholar 

  48. Tian, C., Massignan, L., Meyer, T. H. & Ackermann, L. Electrochemical C–H/N–H activation by water-tolerant cobalt catalysis at room temperature. Angew. Chem. Int. Ed. 57, 2383–2387 (2018).

    CAS  Google Scholar 

  49. Mei, R., Sauermann, N., Oliveira, J. C. A. & Ackermann, L. Electroremovable traceless hydrazides for cobalt-catalyzed electro-oxidative C–H/N–H activation with internal alkynes. J. Am. Chem. Soc. 140, 7913–7921 (2018).

    CAS  PubMed  Google Scholar 

  50. Tang, S., Wang, D., Liu, Y., Zeng, L. & Lei, A. Cobalt-catalyzed electrooxidative C–H/N–H [4+2] annulation with ethylene or ethyne. Nat. Commun. 9, 798 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Mei, R., Ma, W., Zhang, Y., Guo, X. & Ackermann, L. Cobaltaelectro-catalyzed oxidative C–H/N–H activation with 1,3-diynes by electro-removable hydrazides. Org. Lett. 21, 6534–6538 (2019).

    CAS  PubMed  Google Scholar 

  52. Meyer, T. H., Oliveira, J. C. A., Sau, S. C., Ang, N. W. J. & Ackermann, L. Electrooxidative allene annulations by mild cobalt-catalyzed C–H activation. ACS Catal. 8, 9140–9147 (2018).

    CAS  Google Scholar 

  53. Sau, S. C., Mei, R., Struwe, J. & Ackermann, L. Cobaltaelectro-catalyzed C–H activation with carbon monoxide or isocyanides. ChemSusChem 12, 3023–3027 (2019).

    CAS  PubMed  Google Scholar 

  54. Zeng, L. et al. Cobalt-catalyzed electrochemical oxidative C–H/N–H carbonylation with hydrogen evolution. ACS Catal. 8, 5448–5453 (2018).

    CAS  Google Scholar 

  55. Cardoso, D. S. P., Šljukić, B., Santos, D. M. F. & Sequeira, C. A. C. Organic electrosynthesis: from laboratorial practice to industrial applications. Org. Process Res. Dev. 21, 1213–1226 (2017).

    CAS  Google Scholar 

  56. Kong, W.-J. et al. Flow rhodaelectro-catalyzed alkyne annulations by versatile C–H activation: mechanistic support for rhodium(III/IV). J. Am. Chem. Soc. 141, 17198–17206 (2019).

    CAS  PubMed  Google Scholar 

  57. Elsherbini, M. & Wirth, T. Electroorganic synthesis under flow conditions. Acc. Chem. Res. 52, 3287–3296 (2019).

    CAS  PubMed  Google Scholar 

  58. Huang, C., Qian, X.-Y. & Xu, H.-C. Continuous-flow electrosynthesis of benzofused S-heterocycles by dehydrogenative C–S cross-coupling. Angew. Chem. Int. Ed. 58, 6650–6653 (2019).

    CAS  Google Scholar 

  59. Folgueiras-Amador, A. A., Philipps, K., Guilbaud, S., Poelakker, J. & Wirth, T. An easy-to-machine electrochemical flow microreactor: efficient synthesis of isoindolinone and flow functionalization. Angew. Chem. Int. Ed. 56, 15446–15450 (2017).

    CAS  Google Scholar 

  60. Schille, B., Giltzau, N. O. & Francke, R. On the use of polyelectrolytes and polymediators in organic electrosynthesis. Angew. Chem. Int. Ed. 57, 422–426 (2018).

    CAS  Google Scholar 

  61. Mei, R., Wang, H., Warratz, S., Macgregor, S. A. & Ackermann, L. Cobalt-catalyzed oxidase C–H/N–H alkyne annulation: mechanistic insights and access to anticancer agents. Chem. Eur. J. 22, 6759–6763 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Generous support by the DFG (Gottfried-Wilhelm-Leibniz award) to L.A., the CSC (scholarship to C.T.) and the DAAD (fellowship to U.D.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.T., T.H.M. and L.A. designed the experiments. C.T., M.S., T.H.M., U.D. and K.R. performed the experiments. C.T., T.H.M., M.S. and L.H.F. designed the device. C.T., M.S., T.H.M., U.D. and L.A. wrote the manuscript.

Corresponding author

Correspondence to Lutz Ackermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Fengzhi Zhang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Mei, R. et al. J. Am. Chem. Soc. 140, 7913–7921 (2018): https://doi.org/10.1021/jacs.8b03521

Meyer, T. H. et al. ACS Catal. 8, 9140–9147 (2018): https://doi.org/10.1021/acscatal.8b03066

Tian, C. et al. Angew. Chem. Int. Ed. 57, 2383–2387 (2018): https://doi.org/10.1002/anie.201712647

Sauermann, N. et al. J. Am. Chem. Soc. 139, 18452–18455 (2017): https://doi.org/10.1021/jacs.7b11025

Key data used in this protocol

Tian, C. et al. Angew. Chem. Int. Ed. 57, 2383–2387 (2018): https://doi.org/10.1002/anie.201712647

Sauermann, N. et al. J. Am. Chem. Soc. 139, 18452–18455 (2017): https://doi.org/10.1021/jacs.7b11025

Integrated supplementary information

Supplementary Fig. 1 Cyclic voltammograms at 100 mVs–1.

n-Bu4NPF6 (0.1 M in MeOH), concentration of substrates 1 mM (NaOPiv 4 mM). (black) blank; (red) substrate 1a; (blue) Co(OAc)2∙4H2O and NaOPiv; (green) Co(OAc)2∙4H2O, NaOPiv and 1a.

Supplementary Fig. 2 Cyclic voltammograms at 100 mVs–1.

n-Bu4NPF6 (0.1 M in MeCN), concentration of substrates 1 mM (NaOPiv 4 mM). (black) blank; (red) substrate 1a; (blue) Co(OAc)2∙4H2O and NaOPiv; (green) Co(OAc)2∙4H2O, NaOPiv and 1a; (purple) Co(OAc)2∙4H2O, NaOPiv, 1a and EtOH (1 mM); (orange) Co(OAc)2∙4H2O, NaOPiv and 1a and EtOH (2 mM); (magenta) Co(OAc)2∙4H2O, NaOPiv and 1a and EtOH (4 mM).

Supplementary Fig. 3

Proposed catalytic cycle for cobaltaelectro-catalyzed oxygenation.

Supplementary Fig. 4

Proposed catalytic cycle for cobaltaelectro-catalyzed annulation.

Supplementary Fig. 5

Technical drawing of the thermal reservoir.

Supplementary Fig. 6

Schlenk-type glass cell.

Supplementary Fig. 7 Parameter settings of the galvanostat.

a) Set the maximum output voltage with “V-Set” to 5.000 V; b) Set the output current with “I-Set” to 0.0040 A; c) Press the “output” button to start the electrolysis.

Supplementary Fig. 8

Cleaning of the platinum electrode.

Supplementary Fig. 9

Gram-scale cobaltaelectrocatalysis setup.

Supplementary Fig. 10

Cobaltaelectrocatalysis in ElectraSyn 2.0.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Supplementary Methods.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Meyer, T.H., Stangier, M. et al. Cobaltaelectro-catalyzed C–H activation for resource-economical molecular syntheses. Nat Protoc 15, 1760–1774 (2020). https://doi.org/10.1038/s41596-020-0306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0306-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing