Skip to main content
Log in

Enhanced Electrochemical Performance of MWCNT-Intercalated Silica/Sulfur Composite Cathode for Rechargeable Lithium-Sulfur Batteries

  • Electrochemical Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Sulfur (S)/silicon dioxide (SiO2)/multiwalled carbon nanotube (MWCNT) ternary composites with potential application in high-performance lithium-sulfur (Li-S) batteries have been prepared by a heat treatment method. The S/SiO2/MWCNT composite with MWCNT content of 20 wt.% exhibited efficient electrochemical performance for use as a cathode in Li-S batteries, with initial discharge capacity of 926 mAh g−1 and coulombic efficiency of 99% at 0.2 C rate. A discharge capacity of 501 mAh g−1 was observed after 300 cycles with a decay rate of 0.15% per cycle. The average capacity retention was found to be 81.7% and 54.1% after 100 cycles and 300 cycles, respectively. These results demonstrate that a high content of MWCNT improved the electronic conductivity while the SiO2/MWCNT matrix represents a strong physical and chemical host for the polysulfides and active material. This study determines the combined effect of silica and MWCNT to improve the performance of the sulfur cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, and Y.S. Su, Chem. Rev. 114, 11751 (2014).

    Article  Google Scholar 

  2. S. Evers, T. Yim, and L.F. Nazar, J. Phys. Chem. C 116, 19653 (2012).

    Article  Google Scholar 

  3. A. Benítez, D. Di Lecce, Á. Caballero, J. Morales, E. Rodríguez-Castellón, and J. Hassoun, J. Power Sources 397, 102 (2018).

    Article  Google Scholar 

  4. G. He, C.J. Hart, X. Liang, A. Garsuch, and L.F. Nazar, ACS Appl. Mater. Interfaces 6, 10917 (2014).

    Article  Google Scholar 

  5. Q. Zhao, Q. Zhu, J. Miao, Z. Guan, H. Liu, R. Chen, Y. An, F. Wu, and B. Xu, ACS Appl. Mater. Interfaces 10, 10882 (2018).

    Article  Google Scholar 

  6. Z. Guo, H. Nie, Z. Yang, W. Hua, C. Ruan, D. Chan, M. Ge, X.A. Chen, and S. Huang, Adv. Sci. 5, 1800026 (2018).

    Article  Google Scholar 

  7. Z. Li, Z. Xiao, S. Wang, Z. Cheng, P. Li, and R. Wang, Adv. Funct. Mater. 29, 1902322 (2019).

    Article  Google Scholar 

  8. K. Krishnaveni, R. Subadevi, M. Raja, T. PremKumar, and M. Sivakumar, J. Appl. Polym. Sci. 135, 46598 (2018).

    Article  Google Scholar 

  9. J. Han, Y. Li, S. Li, P. Long, C. Cao, Y. Cao, W. Wang, Y. Feng, and W. Feng, Sustain. Energy Fuels 2, 2187 (2018).

    Article  Google Scholar 

  10. H. Yu, H. Li, S. Yuan, Y. Yang, J. Zheng, J. Hu, D. Yang, Y. Wang, and A. Dong, Nano Res. 10, 2495 (2017).

    Article  Google Scholar 

  11. Z.Z. Pan, W. Lv, Y.B. He, Y. Zhao, G. Zhou, L. Dong, S. Niu, C. Zhang, R. Lyu, C. Wang, and H. Shi, Adv. Sci. 5, 1800384 (2018).

    Article  Google Scholar 

  12. P. Rajkumar, K. Diwakar, R.M. Gnanamuthu, R. Subadevi, and M. Sivakumar, Mater. Res. Express 6, 094005 (2019).

    Article  Google Scholar 

  13. R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, and K. Amine, Nano Lett. 13, 4642 (2013).

    Article  Google Scholar 

  14. H. Zhou, D. Wang, A. Fu, X. Liu, Y. Wang, Y. Li, P. Guo, H. Li, and X.S. Zhao, Mater. Sci. Eng. B 227, 9 (2018).

    Article  Google Scholar 

  15. S.Z. Zeng, Y. Yao, L. Huang, H. Wu, B. Peng, Q. Zhang, X. Li, L. Yu, S. Liu, W. Tu, and T. Lan, Chem. Eur. J. 24, 1988 (2018).

    Article  Google Scholar 

  16. S. Feng, J. Song, S. Fu, C. Zhu, Q. Shi, M.K. Song, D. Du, and Y. Lin, J. Mater. Chem. A 5, 23737 (2017).

    Article  Google Scholar 

  17. K. Urita, T. Fujimori, H. Notohara, and I. Moriguchi, ACS Appl. Energy Mater. 1, 807 (2018).

    Article  Google Scholar 

  18. L. Shi, F. Zeng, X. Cheng, K.H. Lam, W. Wang, A. Wang, Z. Jin, F. Wu, and Y. Yang, Chem. Eng. J. 334, 305 (2018).

    Article  Google Scholar 

  19. X. Hu, K. Leng, C. Zhang, and J. Luo, RSC Adv. 8, 18502 (2018).

    Article  Google Scholar 

  20. B. Li, Q. Xiao, and Y. Luo, Mater. Des. 153, 9 (2018).

    Article  Google Scholar 

  21. W. Kong, D. Wang, L. Yan, Y. Luo, K. Jiang, Q. Li, L. Zhang, S. Lu, S. Fan, J. Li, and J. Wang, Carbon 139, 896 (2018).

    Article  Google Scholar 

  22. X. Ye, J. Ma, Y.S. Hu, H. Wei, and F. Ye, J. Mater. Chem. A 4, 775 (2016).

    Article  Google Scholar 

  23. W. Bao, Z. Zhang, C. Zhou, Y. Lai, and J. Li, J. Power Sources 248, 570 (2014).

    Article  Google Scholar 

  24. B. Ling, A. Chen, W. Liu, K. Liu, H. Hu, and J. Zhang, Mater. Lett. 218, 321 (2018).

    Article  Google Scholar 

  25. J. Li, J. Guo, L. Zeng, Y. Huang, and R. Peng, RSC Adv. 6, 26630 (2016).

    Article  Google Scholar 

  26. H. Wu, Q. Tang, H. Fan, Z. Liu, A. Hu, S. Zhang, W. Deng, and X. Chen, Electrochim. Acta 255, 179 (2017).

    Article  Google Scholar 

  27. P. Rajkumar, K. Diwakar, G. Radhika, K. Krishnaveni, R. Subadevi, and M. Sivakumar, Vacuum 161, 37 (2019).

    Article  Google Scholar 

  28. P. Rajkumar, K. Diwakar, R. Subadevi, R.M. Gnanamuthu, and M. Sivakumar, Curr. Appl. Phys. 19, 902 (2019).

    Article  Google Scholar 

  29. H. Wu, L. Xia, J. Ren, Q. Zheng, C. Xu, and D. Lin, J. Mater. Chem. A 5, 20458 (2017).

    Article  Google Scholar 

  30. M. Qi, X. Liang, F. Wang, M. Han, J. Yin, and M. Chen, J. Alloys Compd. 799, 345 (2019).

    Article  Google Scholar 

  31. X. Huang, J. Chen, Z. Lu, H. Yu, Q. Yan, and H.H. Hng, Sci. Rep. 3, 2317 (2013).

    Article  Google Scholar 

  32. H. Pan, Z. Cheng, Z. Xiao, X. Li, and R. Wang, Adv. Funct. Mater. 27, 1703936 (2017).

    Article  Google Scholar 

  33. W. Yang, W. Yang, A. Song, G. Sunand, and G. Shao, Nanoscale 10, 816 (2018).

    Article  Google Scholar 

  34. G. Radhika, K. Krishnaveni, C. Kalaiselvi, R. Subadevi, M. Sivakumar, Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02963-0

    Article  Google Scholar 

  35. M. Raja, N. Angulakshmi, and A.M. Stephan, RSC Adv. 6, 13772 (2016).

    Article  Google Scholar 

  36. K. Kalaiappan, S. Marimuthu, S. Rengapillai, R. Murugan, and T. Premkumar, Ionics 25, 4637 (2019).

    Article  Google Scholar 

  37. X.Z. Ma, B. Jin, P.M. Xin, and H.H. Wang, Appl. Surf. Sci. 307, 346 (2014).

    Article  Google Scholar 

  38. R. Mukkabla, P. Meduri, M. Deepa, S.M. Shivaprasad, and P. Ghosal, J. Power Sources 342, 202 (2017).

    Article  Google Scholar 

  39. T.G. Jeong, D.S. Choi, H. Song, J. Choi, S.A. Park, S.H. Oh, H. Kim, Y. Jung, and Y.T. Kim, ACS Energy Lett. 2, 327 (2017).

    Article  Google Scholar 

  40. G. Yuan, H. Jin, Y. Jin, and L. Wu, J. Solid State Electr. 22, 693 (2018).

    Article  Google Scholar 

  41. J. Song, J. Zheng, S. Feng, C. Zhu, S. Fu, W. Zhao, D. Du, and Y. Lin, Carbon 128, 63 (2018).

    Article  Google Scholar 

  42. K. Dong, S. Wang, H. Zhang, and J. Wu, Mater. Res. Bull. 48, 2079 (2013).

    Article  Google Scholar 

  43. X. He, H. Hou, X. Yuan, L. Huang, J. Hu, B. Liu, J. Xu, J. Xie, J. Yang, S. Liang, and X. Wu, Sci. Rep. 7, 40679 (2017).

    Article  Google Scholar 

  44. D. Karuppiah, R. Palanisamy, A. Ponnaiah, W.R. Liu, C.H. Huang, S. Rengapillai, and S. Marimuthu, Energies 13, 786 (2020).

    Article  Google Scholar 

  45. F. Qin, K. Zhang, J. Fang, Y. Lai, Q. Li, Z. Zhang, and J. Li, New J. Chem. 38, 4549 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

All the authors from Alagappa University acknowledge financial support from DST-SERB, New Delhi under the Physical sciences Grant sanctioned vide EMR/2016/006302. Also, all the authors gratefully acknowledge the provision of analytical facilities by the Department of Physics, Alagappa University under the PURSE and FIST programme, sponsored by the Department of Science and Technology (DST), Special Assistance Programme (SAP) sponsored by the University Grants Commission (UGC), New Delhi, Govt. of India and Ministry of Human Resource Development RUSA- Phase 2.0 Grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Dept. of Education, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in terms of framing, planning, and executing this research work, analysis, and writing the manuscript.

Corresponding authors

Correspondence to Subadevi Rengapillai or Sivakumar Marimuthu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, R., Karuppiah, D., Rengapillai, S. et al. Enhanced Electrochemical Performance of MWCNT-Intercalated Silica/Sulfur Composite Cathode for Rechargeable Lithium-Sulfur Batteries. JOM 72, 2260–2268 (2020). https://doi.org/10.1007/s11837-020-04165-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04165-w

Navigation