Skip to main content
Log in

Resistance Spot Welding of Similar and Dissimilar Metals: The Effect of Graphene Interlayer

  • Metal Matrix Composites: Analysis, Modeling, Observations and Interpretations
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Resistance spot welding of similar AISI-1008 steel plates and dissimilar AISI-1008/Al-1100 alloy joints were carried out using a graphene nanoplatelets interlayer and the underlying strengthening mechanisms were discussed. Weld strength of the joints depends on the welding current/time used for the resistance spot welding. An enhancement of ~ 49% and ~ 124% was reported at certain parameters for the similar and dissimilar joints, respectively. Optical microscopy, SEM, XRD, TEM and Raman spectroscopy was used for microstructural characterization. Microhardness studies at the weld nugget cross-section revealed an enhanced hardness at the fused zone for both the cases. Al-Fe rich intermetallics formation was reported at the interfacial zone of the dissimilar joints which played a role in hardness increment. Variation of nugget size with the increase in welding current was studied. Fractured surfaces were analyzed and it was concluded that shear dimple and a mix of the shear dimple and brittle fractures were dominant in cases of similar and dissimilar metal joints, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.Y. Choi, D.C. Kim, D.G. Nam, Y.D. Kim, and Y.D. Park, J. Mater. Sci. Technol. 26, 858 (2010).

    Google Scholar 

  2. I.N. Fridlyander, V.G. Sister, O.E. Grushko, V.V. Berstenev, L.M. Sheveleva, and L.A. Ivanova, Met. Sci. Heat Treat. 44, 365 (2002).

    Google Scholar 

  3. J. Hirsch, Mater. Trans. 52, 818 (2011).

    Google Scholar 

  4. A. Mathieu, R. Shabadi, A. Deschamps, M. Suery, S. Matteï, D. Grevey, and E. Cicala, Opt. Laser Technol. 39, 652 (2007).

    Google Scholar 

  5. M. Pouranvari, Mater. Sci. Technol. (UK) 33, 1705 (2017).

    Google Scholar 

  6. S. Madhavan, M. Kamaraj, L. Vijayaraghavan, and K. SrinivasaRao, Mater. Sci. Technol. (UK) 33, 200 (2017).

    Google Scholar 

  7. S. Madhavan, M. Kamaraj, and L. Vijayaraghavan, Sci. Technol. Weld. Join. 21, 194 (2015).

    Google Scholar 

  8. H. Springer, A. Kostka, J.F. dos Santos, and D. Raabe, Mater. Sci. Eng., A 528, 4630 (2011).

    Google Scholar 

  9. J. Schneider and R. Radzilowski, JOM 66, 2123 (2014).

    Google Scholar 

  10. X. Li, A. Scherf, M. Heilmaier, and F. Stein, J. Phase Equilib. Diffus. 37, 162 (2016).

    Google Scholar 

  11. H. Springer, A. Szczepaniak, and D. Raabe, Acta Mater. 96, 203 (2015).

    Google Scholar 

  12. R.W. Richards, R.D. Jones, P.D. Clements, and H. Clarke, Int. Mater. Rev. 39, 191 (1994).

    Google Scholar 

  13. H.E. Emre and R. Kaçar, Int. J. Adv. Manuf. Technol. 83, 1737 (2016).

    Google Scholar 

  14. H. Kazdal Zeytin, H. ErtekEmre, and R. Kaçar, Metals (Basel) 7, 14 (2017).

    Google Scholar 

  15. M. Goodarzi, S.P.H. Marashi, and M. Pouranvari, J. Mater. Process. Technol. 209, 4379 (2009).

    Google Scholar 

  16. C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee, and E. Biro, Mater. Sci. Eng., A 485, 334 (2008).

    Google Scholar 

  17. M.I. Khan, M.L. Kuntz, P. Su, A. Gerlich, T. North, and Y. Zhou, Sci. Technol. Weld. Join. 12, 175 (2007).

    Google Scholar 

  18. D. Özyürek, Mater. Des. 29, 597 (2008).

    Google Scholar 

  19. A. Chabok, E. van der Aa, J.T.M.T.M. De Hosson, Y.T.T. Pei, E. Van Der Aa, J.T.M. De Hosson, Y.T.T. Pei, E. van der Aa, J.T.M.T.M. De Hosson, and Y.T.T. Pei, Mater. Des. 124, 171 (2017).

    Google Scholar 

  20. R.S. Florea, K.N. Solanki, D.J. Bammann, J.C. Baird, J.B. Jordon, and M.P. Castanier, Mater. Des. 34, 624 (2012).

    Google Scholar 

  21. M. Pouranvari, S.M. Mousavizadeh, S.P.H. Marashi, M. Goodarzi, and M. Ghorbani, Mater. Des. 32, 1390 (2011).

    Google Scholar 

  22. X. Yuan, C. Li, J. Chen, X. Li, X. Liang, and X. Pan, J. Mater. Process. Technol. 239, 31 (2017).

    Google Scholar 

  23. D. Min, J. Shen, S. Lai, and J. Chen, Mater. Charact. 60, 1583 (2009).

    Google Scholar 

  24. Y. Shi and H. Guo, Fatigue Fract. Eng. Mater. Struct. 36, 1081 (2013).

    Google Scholar 

  25. H.C.C. Lin, C.A.A. Hsu, C.S.S. Lee, T.Y.Y. Kuo, and S.L.L. Jeng, J. Mater. Process. Technol. 251, 205 (2018).

    Google Scholar 

  26. P. Penner, L. Liu, A. Gerlich, and Y. Zhou, Weld. J. 93, 225 (2014).

    Google Scholar 

  27. C.T. Lane, C.D. Sorensen, G.B. Hunter, S.A. Gedeon, and T.W. Eagar, Weld. Res. 1987, 260 (1987).

    Google Scholar 

  28. M.R.R. Arghavani, M. Movahedi, and A.H.H. Kokabi, Mater. Des. 102, 106 (2016).

    Google Scholar 

  29. M. Sun, S.T. Niknejad, G. Zhang, M.K. Lee, L. Wu, and Y. Zhou, Mater. Des. 87, 905 (2015).

    Google Scholar 

  30. M. Sun, S.B. Behravesh, L. Wu, Y. Zhou, and H. Jahed, Fatigue Fract. Eng. Mater. Struct. 40, 1048 (2017).

    Google Scholar 

  31. W. Zhang, D. Sun, L. Han, and D. Liu, Mater. Des. 57, 186 (2014).

    Google Scholar 

  32. M. Winnicki, A. Małachowska, M. Korzeniowski, M. Jasiorski, and A. Baszczuk, Surf. Eng. 34, 235 (2018).

    Google Scholar 

  33. Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao, and X.B. Liu, Mater. Des. 109, 256 (2016).

    Google Scholar 

  34. S. Marconi, G. Alaimo, V. Mauri, M. Torre, and F. Auricchio, IMWS-AMP 20, 1 (2017).

    Google Scholar 

  35. A.A. Tony Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha, and B. Boesl, Mater. Sci. Eng., A 728, 45 (2018).

    Google Scholar 

  36. Y. Zhoa and Q.W. Long Chen, Coatings 7, 1 (2017).

    Google Scholar 

  37. T. Das, B. Sahoo, P. Kumar, and J. Paul, Mater. Res. Express 6, 1 (2019).

    Google Scholar 

  38. R. Qiu, H. Shi, K. Zhang, Y. Tu, C. Iwamoto, and S. Satonaka, Mater. Charact. 61, 684 (2010).

    Google Scholar 

  39. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenber, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).

    Google Scholar 

  40. A. Sharma, S. Sagar, R.P. Mahto, B. Sahoo, S.K. Pal, and J. Paul, Surf. Coat. Technol. 337, 12 (2018).

    Google Scholar 

  41. J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gunko, and W.J. Blau, Adv. Funct. Mater. 14, 791 (2004).

    Google Scholar 

  42. H.J. Choi, G.B. Kwon, G.Y. Lee, and D.H. Bae, Scr. Mater. 59, 360–363 (2008).

    Google Scholar 

  43. J.W. Wyrzykowski and M.W. Grabski, Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 53, 505 (1986).

    Google Scholar 

  44. A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri, and D. Lahiri, Mater. Sci. Eng., A 695, 20 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Paul, J. Resistance Spot Welding of Similar and Dissimilar Metals: The Effect of Graphene Interlayer. JOM 72, 2863–2874 (2020). https://doi.org/10.1007/s11837-020-04159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04159-8

Navigation