Skip to main content

Advertisement

Log in

Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient’s health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott N (1992) Comparative physiology of the blood-brain barrier. Physiology and pharmacology of the blood-brain barrier. Springer, Berlin, pp 371–396

    Google Scholar 

  • Adibhatla RM, Hatcher JF (2008) Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets 7(3):243–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Afonso-Grunz F, Muller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141. https://doi.org/10.1007/s00018-015-1922-2

    Article  CAS  PubMed  Google Scholar 

  • Alghisi GC, Ponsonnet L, Rüegg C (2009) The integrin antagonist cilengitide activates αVβ3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS One 4(2):e4449

    PubMed  PubMed Central  Google Scholar 

  • Allahtavakoli M, Amin F, Esmaeeli-Nadimi A, Shamsizadeh A, Kazemi‐Arababadi M, Kennedy D (2015) Ascorbic acid reduces the adverse effects of delayed administration of tissue plasminogen activator in a rat stroke model. Basic Clin Pharmacol Toxicol 117(5):335–339

    CAS  PubMed  Google Scholar 

  • Alluri H, Stagg HW, Wilson RL, Clayton RP, Sawant DA, Koneru M, Beeram MR, Davis ML, Tharakan B (2014) Reactive oxygen species-caspase‐3 relationship in mediating blood–brain barrier endothelial cell hyperpermeability following oxygen–glucose deprivation and reoxygenation. Microcirculation 21(2):187–195

    CAS  PubMed  Google Scholar 

  • Almutairi MM, Gong C, Xu YG, Chang Y, Shi H (2016) Factors controlling permeability of the blood–brain barrier. Cell Mol Life Sci 73(1):57–77

    CAS  PubMed  Google Scholar 

  • Amantea D, Corasaniti M, Mercuri N, Bernardi G, Bagetta G (2008) Brain regional and cellular localization of gelatinase activity in rat that have undergone transient middle cerebral artery occlusion. Neuroscience 152(1):8–17

    CAS  PubMed  Google Scholar 

  • Bandopadhyay R, Orte C, Lawrenson J, Reid A, De Silva S, Allt G (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30(1):35–44

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  • Becker KJ (2002) Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6. 5) in acute stroke. Curr Med Res Opin 18(sup2):s18–s22

    PubMed  Google Scholar 

  • Beermann J, Piccoli M-T, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96(4):1297–1325

    CAS  PubMed  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Peptide transport and delivery into the central nervous system. Springer, Berlin, pp 39–78

    Google Scholar 

  • Berger C, Fiorelli M, Steiner T, Schäbitz W-Rd, Bozzao L, Bluhmki E, Hacke W von, Kummer Rd (2001) Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke 32(6):1330–1335

  • Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213(3):565–573

    CAS  PubMed  Google Scholar 

  • Bihl J, Wang J, Ma X, Yang Y, Zhao B, Chen Y (2018) Exosome and MiRNA in Stroke. In: Cellular and Molecular Approaches to Regeneration and Repair. Springer, Berlin pp 325–361

  • Borlongan CV, Nguyen H, Lippert T, Russo E, Tuazon J, Xu K, Lee JY, Sanberg PR, Kaneko Y, Napoli E (2019) May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells. J Cereb Blood Flow Metab 39(2):367–370. https://doi.org/10.1177/0271678x18811277

    Article  CAS  PubMed  Google Scholar 

  • Brightman MW, Kadota Y (1993) Nonpermeable and permeable vessels of the brain. NIDA Res Monogr 120:87–87

    Google Scholar 

  • Brown EJ (1997) Adhesive interactions in the immune system. Trends Cell Biol 7(7):289–295

    CAS  PubMed  Google Scholar 

  • Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X (2016) MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab 36(2):387–392

    CAS  PubMed  Google Scholar 

  • Candelario-Jalil E, Thompson J, Taheri S, Grossetete M, Adair JC, Edmonds E, Prestopnik J, Wills J, Rosenberg GA (2011) Matrix metalloproteinases are associated with increased blood–brain barrier opening in vascular cognitive impairment. Stroke 42(5):1345–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel NS (2017) Mitochondria: back to the future. Nat Rev Mol Cell Biol 19:76. https://doi.org/10.1038/nrm.2017.133

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi M, Kaczmarek L (2014) Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol 49(1):563–573

    CAS  PubMed  Google Scholar 

  • Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD (2008) STAT1 signaling modulates HIV-1–induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood 111(4):2062–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chelluboina B, Klopfenstein JD, Pinson DM, Wang DZ, Vemuganti R, Veeravalli KK (2015) Matrix Metalloproteinase-12 induces blood-brain barrier damage after focal cerebral ischemia. Stroke 46(12):3523–3531. https://doi.org/10.1161/strokeaha.115.011031

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Dai SH, Li X, Luo P, Zhu J, Wang YH, Fei Z, Jiang XF (2018) Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biol 14:229–236. https://doi.org/10.1016/j.redox.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y (2014) Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res 5(4):472–475

    CAS  PubMed  Google Scholar 

  • Clark IA, Alleva LM, Vissel B (2010) The roles of TNF in brain dysfunction and disease. Pharmacol Ther 128(3):519–548

    CAS  PubMed  Google Scholar 

  • Cuadrado E, Rosell A, Borrell-Pagès M, García-Bonilla L, Hernández-Guillamon M, Ortega-Aznar A, Montaner J (2009) Matrix metalloproteinase-13 is activated and is found in the nucleus of neural cells after cerebral ischemia. J Cereb Blood Flow Metab 29(2):398–410

    CAS  PubMed  Google Scholar 

  • Dai SH, Chen T, Wang YH, Zhu J, Luo P, Rao W, Yang YF, Fei Z, Jiang XF (2014) Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. Int J Mol Med 34(4):1159–1168. https://doi.org/10.3892/ijmm.2014.1876

    Article  CAS  PubMed  Google Scholar 

  • Dal-Pizzol F, Rojas HA, Dos Santos EM, Vuolo F, Constantino L, Feier G, Pasquali M, Comim CM, Petronilho F, Gelain DP (2013) Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood–brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol 48(1):62–70

    CAS  PubMed  Google Scholar 

  • de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64(1):37–43

    PubMed  Google Scholar 

  • Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF (2020) Novel therapeutic strategies for Alzheimer’s disease: Implications from cell-based therapy and nanotherapy. Nanomed Nanotechnol Biol Med 24:102149. https://doi.org/10.1016/j.nano.2020.102149

    Article  CAS  Google Scholar 

  • Dietrich J-B (2002) The adhesion molecule ICAM-1 and its regulation in relation with the blood–brain barrier. J Neuroimmunol 128(1–2):58–68

    CAS  PubMed  Google Scholar 

  • Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38(4):1345–1353

    CAS  PubMed  Google Scholar 

  • Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X (2015) Mitochondrial crisis in cerebrovascular endothelial cells opens the blood–brain barrier. Stroke 46(6):1681–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • ElAli A, Hermann DM (2012) Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathol 22(2):175–187. https://doi.org/10.1111/j.1750-3639.2011.00517.x

    Article  CAS  PubMed  Google Scholar 

  • Elgendy IY, Mahmoud AN, Mansoor H, Mojadidi MK, Bavry AA (2016) Evolution of acute ischemic stroke therapy from lysis to thrombectomy: similar or different to acute myocardial infarction? Int J Cardiol 222:441–447

    PubMed  Google Scholar 

  • Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans A (2016) Timeline: mitochondria. Mol Cell 61(5):790. https://doi.org/10.1016/j.molcel.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Xiong X, Zhang Y, Yan D, Jian Z, Xu B, Zhao H (2016) MKEY, a peptide inhibitor of CXCL4-CCL5 heterodimer formation, protects against stroke in mice. J Am Heart Assoc 5(9):e003615

    PubMed  PubMed Central  Google Scholar 

  • Fang Z, He Q-W, Li Q, Chen X-L, Baral S, Jin H-J, Zhu Y-Y, Li M, Xia Y-P, Mao L (2016) MicroRNA-150 regulates blood–brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J 30(6):2097–2107

    CAS  PubMed  Google Scholar 

  • Fiala M, Looney DJ, Stins M, Way DD, Zhang L, Gan X, Chiappelli F, Schweitzer ES, Shapshak P, Weinand M (1997) TNF-alpha opens a paracellular route for HIV-1 invasion across the blood-brain barrier. Mol Med 3(8):553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Förster C, Burek M, Romero IA, Weksler B, Couraud PO, Drenckhahn D (2008) Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 586(7):1937–1949

    PubMed  PubMed Central  Google Scholar 

  • Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 51(5):967–977

    CAS  PubMed  Google Scholar 

  • Fujimoto M, Takagi Y, Aoki T, Hayase M, Marumo T, Gomi M, Nishimura M, Kataoka H, Hashimoto N, Nozaki K (2008) Tissue inhibitor of metalloproteinases protect blood—brain barrier disruption in focal cerebral ischemia. J Cereb Blood Flow Metab 28(10):1674–1685

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13(12):780

    CAS  PubMed  Google Scholar 

  • Gasche Y, Copin J-C, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21(12):1393–1400

    CAS  PubMed  Google Scholar 

  • Ge X-T, Lei P, Wang H-C, Zhang A-L, Han Z-L, Chen X, Li S-H, Jiang R-C, Kang C-S, Zhang J-N (2014) miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 4:6718

    PubMed  PubMed Central  Google Scholar 

  • Ge X, Han Z, Chen F, Wang H, Zhang B, Jiang R, Lei P, Zhang J (2015) MiR-21 alleviates secondary blood–brain barrier damage after traumatic brain injury in rats. Brain Res 1603:150–157

    CAS  PubMed  Google Scholar 

  • Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857

    PubMed  Google Scholar 

  • Geng Y, Li E, Mu Q, Zhang Y, Wei X, Li H, Cheng L, Zhang B (2015) Hydrogen Sulfide Inhalation Decreases Early Blood—Brain Barrier Permeability and Brain Edema Induced by Cardiac Arrest and Resuscitation. J Cereb Blood Flow Metab 35(3):494–500

    CAS  PubMed  Google Scholar 

  • Giraud M, Cho TH, Nighoghossian N, Maucort-Boulch D, Deiana G, Ostergaard L, Baron JC, Fiehler J, Pedraza S, Derex L, Berthezene Y (2015) Early blood brain barrier changes in acute ischemic stroke: a sequential MRI study. J Neuroimag 25(6):959–963. https://doi.org/10.1111/jon.12225

    Article  Google Scholar 

  • Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, Jander S (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71(6):743–752

    CAS  PubMed  Google Scholar 

  • Goldmann EE (1909) Die aussere und innere Sekretion des gesunden und kranken Organismus im Liche der” vitalen Farbung”. Beitr Klin Chir 64:192–265

  • Grasmick KA, Hu H, Hone EA, Farooqi I, Rellick SL, Simpkins JW, Ren X (2018) Uncoupling of the Electron Transport Chain Compromises Mitochondrial Oxidative Phosphorylation and Exacerbates Stroke Outcomes. J Neuroinfect Dis 9(4). https://doi.org/10.4172/2314-7326.1000283

  • Graves DT, Jiang Y (1995) Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med 6(2):109–118

    CAS  PubMed  Google Scholar 

  • Grossmann J (2002) Molecular mechanisms of “detachment-induced apoptosis—Anoikis.” Apoptosis 7(3):247–260

  • Guan R, Zou W, Dai X, Yu X, Liu H, Chen Q, Teng W (2018) Mitophagy, a potential therapeutic target for stroke. J Biomed Sci 25(1):87. https://doi.org/10.1186/s12929-018-0487-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23(1):87–96

    CAS  PubMed  Google Scholar 

  • György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464

    PubMed  Google Scholar 

  • Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J, Sorokin L (2017) The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. https://doi.org/10.1016/j.matbio.2017.11.007

    Article  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    CAS  PubMed  Google Scholar 

  • Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa K, Chan SJ, Mandeville ET, Park JH, Bruzzese M, Montaner J, Arai K, Rosell A, Lo EH (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36(9):1404–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Guillamon M, Martinez‐Saez E, Delgado P, Domingues‐Montanari S, Boada C, Penalba A, Boada M, Pagola J, Maisterra O, Rodriguez‐Luna D (2012) MMP‐2/MMP‐9 plasma level and brain expression in cerebral amyloid angiopathy‐associated hemorrhagic stroke. Brain Pathol 22(2):133–141

    CAS  PubMed  Google Scholar 

  • Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Ostergaard L (2008) MRI detection of early blood-brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 39(3):1025–1028. https://doi.org/10.1161/STROKEAHA.107.497719

    Article  PubMed  Google Scholar 

  • Hone A, Hu E, Sprowls H, Farooqi AS, Grasmick I, Lockman K, Simpkins RP, Ren WJ (2018) Biphasic blood-brain barrier openings after stroke. Neurol Disord Stroke Int 1(3):1–4

    Google Scholar 

  • Hori S, Ohtsuki S, Hosoya Ki, Nakashima E, Terasaki T (2004) A pericyte-derived angiopoietin‐1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie‐2 activation in vitro. J Neurochem 89(2):503–513

    CAS  PubMed  Google Scholar 

  • Hu H, Doll DN, Sun J, Lewis SE, Wimsatt JH, Kessler MJ, Simpkins JW, Ren X (2016) Mitochondrial impairment in cerebrovascular endothelial cells is involved in the correlation between body temperature and stroke severity. Aging Dis 7(1):14

    PubMed  PubMed Central  Google Scholar 

  • Hu H, Hone EA, Provencher EAP, Sprowls SA, Farooqi I, Corbin DR, Sarkar SN, Hollander JM, Lockman PR, Simpkins JW, Ren X (2020) MiR-34a interacts with cytochrome c and shapes stroke outcomes. Sci Rep 10(1):3233. https://doi.org/10.1038/s41598-020-59997-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866

    CAS  PubMed  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325(6101):253

    CAS  PubMed  Google Scholar 

  • Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MV, Chen J, Keep RF, Shi Y (2017) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol

  • Jiang T, Zhou S, Li X, Song J, An T, Huang X, Ping X, Wang L (2019) MicroRNA-155 induces protection against cerebral ischemia/reperfusion injury through regulation of the Notch pathway in vivo. Exp Ther Med 18(1):605–613. https://doi.org/10.3892/etm.2019.7590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Liu J, Liu KJ, Rosenberg GA, Yang Y, Liu W (2013) Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Exp Neurol 240:9–16

    CAS  PubMed  Google Scholar 

  • Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, Abduljawad N, Kliper E, Korczyn AD, Thareja NS, Kesner EL, Zhou M, Huang S, Silva TK, Katz N, Bornstein NM, Silva AJ, Shohami E, Carmichael ST (2019) CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(5):1143-1157.e1113. https://doi.org/10.1016/j.cell.2019.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N, Tyagi SC, Tyagi N (2014) Role of microRNA29b in blood–brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metab 34(7):1212–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanemoto Y, Nakase H, Akita N, Sakaki T (2002) Effects of anti-intercellular adhesion molecule-1 antibody on reperfusion injury induced by late reperfusion in the rat middle cerebral artery occlusion model. Neurosurgery 51(4):1034–1042

    PubMed  Google Scholar 

  • Kassner A, Roberts T, Taylor K, Silver F, Mikulis D (2005) Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. Am J Neuroradiol 26(9):2213–2217

    PubMed  PubMed Central  Google Scholar 

  • Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM (2014) Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 5(1):3–16

    CAS  PubMed  Google Scholar 

  • Kim AS, Nguyen-Huynh M, Johnston SC (2011) A cost–utility analysis of mechanical thrombectomy as an adjunct to intravenous tissue-type plasminogen activator for acute large-vessel ischemic stroke. Stroke 42(7):2013–2018

    PubMed  Google Scholar 

  • Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18(7):419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41(2):271–290

    CAS  PubMed  Google Scholar 

  • Knowland D, Arac A, Sekiguchi Kohei J, Hsu M, Lutz Sarah E, Perrino J, Steinberg Gary K, Barres Ben A, Nimmerjahn A, Agalliu D (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82(3):603–617. https://doi.org/10.1016/j.neuron.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159

    CAS  PubMed  Google Scholar 

  • Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo J-M, Ford GA (2003) Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke 34(11):2543–2548

    CAS  PubMed  Google Scholar 

  • Krueger M, Härtig W, Reichenbach A, Bechmann I, Michalski D (2013) Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One 8(2):e56419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger M, Bechmann I, Immig K, Reichenbach A, Härtig W, Michalski D (2015) Blood—brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab 35(2):292–303

    CAS  PubMed  Google Scholar 

  • Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR (2008) Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 55(3):281–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18(6):690–692

    CAS  PubMed  Google Scholar 

  • Lai CP-K, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langhauser F, Kraft P, Gob E, Leinweber J, Schuhmann MK, Lorenz K, Gelderblom M, Bittner S, Meuth SG, Wiendl H, Magnus T, Kleinschnitz C (2014) Blocking of alpha4 integrin does not protect from acute ischemic stroke in mice. Stroke 45(6):1799–1806. https://doi.org/10.1161/strokeaha.114.005000

    Article  CAS  PubMed  Google Scholar 

  • Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett 585(23):3770–3780

    CAS  PubMed  Google Scholar 

  • Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M, Klein RS, Diamond MS (2015) Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 7(284):284ra259-284ra259

    Google Scholar 

  • Lee H, Pienaar IS (2014) Disruption of the blood-brain barrier in Parkinson’s disease: curse or route to a cure. Front Biosci (Landmark Ed) 19:272–280

    CAS  Google Scholar 

  • Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 32(9):3044–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-C, Tsai Y-H, Tang S-C, Liou H-C, Kang K-H, Liou H-H, Jeng J-S, Fu W-M (2018) Cytokine MIF enhances blood-brain barrier permeability: impact for therapy in ischemic stroke. Sci Rep 8(1):1–12

    Google Scholar 

  • Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA (2018) Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood) 243(2):159–165. https://doi.org/10.1177/1535370217743766

    Article  CAS  Google Scholar 

  • Lopez-Ramirez MA, Fischer R, Torres-Badillo CC, Davies HA, Logan K, Pfizenmaier K, Male DK, Sharrack B, Romero IA (2012) Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol 189(6):3130–9

    CAS  PubMed  Google Scholar 

  • Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, Kay O, de Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28(6):2551–2565. https://doi.org/10.1096/fj.13-248880

    Article  CAS  PubMed  Google Scholar 

  • Losy J, Zaremba J (2001) Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke 32(11):2695–2696

    CAS  PubMed  Google Scholar 

  • Louboutin JP, Reyes BA, Agrawal L, Van Bockstaele EJ, Strayer DS (2011) HIV-1 gp120 upregulates matrix metalloproteinases and their inhibitors in a rat model of HIV encephalopathy. Eur J Neurosci 34(12):2015–2023

    PubMed  Google Scholar 

  • Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Khatri P, Tomsick T, Sharp FR (2009) Mechanical reperfusion is associated with post-ischemic hemorrhage in rat brain. Exp Neurol 216(2):407–412

    PubMed  PubMed Central  Google Scholar 

  • Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11(1):1696–1701

    CAS  PubMed  Google Scholar 

  • Mark KS, Miller DW (1999) Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci 64(21):1941–1953

    CAS  PubMed  Google Scholar 

  • McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28(38):9451–9462. https://doi.org/10.1523/jneurosci.2674-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McColl BW, Rose N, Robson FH, Rothwell NJ, Lawrence CB (2010) Increased brain microvascular MMP-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab 30(2):267–272. https://doi.org/10.1038/jcbfm.2009.217

    Article  CAS  PubMed  Google Scholar 

  • Mennicken F, Maki R, de Souza EB, Quirion R (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 20(2):73–78

    CAS  PubMed  Google Scholar 

  • Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler J 9(6):540–549

    CAS  Google Scholar 

  • Mishra R, Singh SK (2013) HIV-1 Tat C modulates expression of miRNA-101 to suppress VE-cadherin in human brain microvascular endothelial cells. J Neurosci 33(14):5992–6000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S, Teramoto H, Gutkind JS, Yamada KM (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135(6):1633–1642

    CAS  PubMed  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    CAS  PubMed  Google Scholar 

  • Nahirney PC, Reeson P, Brown CE (2016) Ultrastructural analysis of blood–brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J Cereb Blood Flow Metab 36(2):413–425

    PubMed  Google Scholar 

  • Neuhaus J, Risau W, Wolburg H (1991) Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculturea. Ann N Y Acad Sci 633(1):578–580

    CAS  PubMed  Google Scholar 

  • Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A, Kataoka Y (2010) Tumor necrosis factor-α mediates the blood–brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254

    CAS  PubMed  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1(5):409–417

    CAS  PubMed  Google Scholar 

  • Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED, Hernandez-Navarro VE, Sanchez-Lopez AL, Alatorre-Jimenez MA (2014) Role of the blood-brain barrier in multiple sclerosis. Arch Med Res 45(8):687–697. https://doi.org/10.1016/j.arcmed.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  • Paiva KBS, Granjeiro JM (2014) Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys 561:74–87

    CAS  PubMed  Google Scholar 

  • Peerschke EI, Yin W, Ghebrehiwet B (2010) Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 47(13):2170–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257

    CAS  PubMed  Google Scholar 

  • Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43(4):348–364

    CAS  PubMed  Google Scholar 

  • Ramiro L, Simats A, García-Berrocoso T, Montaner J (2018) Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord 11:1756286418789340

    PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM (2002) The chemokine system in neuroinflammation: an update. J Infect Dis 186(Supplement_2):S152–S156

    CAS  PubMed  Google Scholar 

  • Relton JK, Martin D, Thompson RC, Russell DA (1996) Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 138(2):206–213. https://doi.org/10.1006/exnr.1996.0059

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Simpkins JW (2015) Deciphering the Blood-Brain Barrier Damage in Stroke: Mitochondrial Mechanism. J Neuroinfectious Dis 6(Suppl 2). https://doi.org/10.4172/2314-7326.S2-e002

  • Ren X, Akiyoshi K, Grafe MR, Vandenbark AA, Hurn PD, Herson PS, Offner H (2012) Myelin specific cells infiltrate MCAO lesions and exacerbate stroke severity. Metab Brain Dis 27(1):7–15

  • Ren X, Engler-Chiurazzi EB, Russell AE, Sarkar SN, Rellick SL, Lewis S, Corbin D, Clapper J, Simpkins JW (2019) MiR-34a and stroke: Assessment of non-modifiable biological risk factors in cerebral ischemia. Neurochem Int 127:73–79. https://doi.org/10.1016/j.neuint.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  • Richard S, Lagerstedt L, Burkhard PR, Debouverie M, Turck N, Sanchez J-C (2015) E-selectin and vascular cell adhesion molecule-1 as biomarkers of 3-month outcome in cerebrovascular diseases. J Inflamm 12(1):61

    Google Scholar 

  • Ridker PM (2018) Interleukin-1 inhibition and ischaemic stroke: has the time for a major outcomes trial arrived? Eur Heart J 39(38):3518–3520. https://doi.org/10.1093/eurheartj/ehy360

    Article  PubMed  Google Scholar 

  • Rochfort KD, Cummins PM (2015) The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43(4):702–706

    CAS  PubMed  Google Scholar 

  • Rolfe D, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, Stetler-Stevenson WG (1992) TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res 576(2):203–207

    CAS  PubMed  Google Scholar 

  • Rosenberg G, Estrada E, Dencoff J (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29(10):2189–2195

    CAS  PubMed  Google Scholar 

  • Salameh TS, Shah GN, Price TO, Hayden MR, Banks WA (2016) Blood–brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate. J Pharmacol Exp Ther 359(3):452–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scalzo F, Alger JR, Hu X, Saver JL, Dani KA, Muir KW, Demchuk AM, Coutts SB, Luby M, Warach S, Liebeskind DS (2013) Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magn Reson Imaging 31(6):961–969. https://doi.org/10.1016/j.mri.2013.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimamura N, Matchett G, Solaroglu I, Tsubokawa T, Ohkuma H, Zhang J (2006) Inhibition of integrin alphavbeta3 reduces blood-brain barrier breakdown in focal ischemia in rats. J Neurosci Res 84(8):1837–1847. https://doi.org/10.1002/jnr.21073

    Article  CAS  PubMed  Google Scholar 

  • Smith C Leukocyte-endothelial cell interactions. In: Seminars in hematology, 1993. vol 4 Suppl 4. pp 45–53; discussion 54 – 45

  • Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM (2016) Interleukin-1 in stroke: from bench to bedside. Stroke 47(8):2160–2167. https://doi.org/10.1161/strokeaha.115.010001

    Article  PubMed  Google Scholar 

  • Solé S, Petegnief V, Gorina R, Chamorro Á, Planas AM (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurol 63(4):338–349

    PubMed  Google Scholar 

  • Song L, Pachter JS (2004) Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res 67(1):78–89

    CAS  PubMed  Google Scholar 

  • Sørensen SS, Nygaard A-B, Nielsen M-Y, Jensen K, Christensen T (2014) miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5(6):711–718

    PubMed  Google Scholar 

  • Spera PA, Ellison JA, Feuerstein GZ, Barone FC (1998) IL-10 reduces rat brain injury following focal stroke. Neurosci Lett 251(3):189–192

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV (2005) Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab 25(5):593–606

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase C-alpha: Rhoa cross talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281(13):8379–88

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17(1):463–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61(5):654–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suofu Y, Wang X, He Y, Li F, Zhang Y, Carlisle DL, Friedlander RM (2020) Mir-155 knockout protects against ischemia/reperfusion-induced brain injury and hemorrhagic transformation. Neuroreport 31(3):235–239. https://doi.org/10.1097/WNR.0000000000001382

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139. https://doi.org/10.1002/path.2638

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, Wang Y, Deng Z, Chen C, Hu X (2019) Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood–brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 33(3):4376–4387

    CAS  PubMed  Google Scholar 

  • Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lötvall J, Nakagama H, Ochiya T (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716–6716. https://doi.org/10.1038/ncomms7716

    Article  CAS  PubMed  Google Scholar 

  • Vemuganti R, Dempsey RJ, Bowen KK (2004) Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke 35(1):179–184

    CAS  PubMed  Google Scholar 

  • Vishnu VY, Padma Srivastava MV (2019) Innovations in acute stroke reperfusion strategies. Ann Indian Acad Neurol 22(1):6–12. https://doi.org/10.4103/aian.AIAN_263_18

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang M-D, Xia Y-P, Gao Y, Zhu Y-Y, Chen S-C, Mao L, He Q-W, Yue Z-Y, Hu B (2017) MicroRNA-130a regulates cerebral ischemia–induced blood–brain barrier permeability by targeting Homeobox A5. FASEB J 32(2):935–944

    Google Scholar 

  • Weiss N, Miller F, Cazaubon S, Couraud P-O (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta (BBA) - Biomembr 1788(4):842–857

    CAS  Google Scholar 

  • Whiteley WN, Emberson J, Lees KR, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G (2016) Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke: a secondary analysis of an individual patient data meta-analysis. Lancet Neurol 15(9):925–933

    PubMed  Google Scholar 

  • Wing SC, Markus HS (2019) Interpreting CT perfusion in stroke. Pract Neurol 19(2):136–142

    PubMed  Google Scholar 

  • Wu J, Zhao D, Wu S, Wang D (2015a) Ang-(1–7) exerts protective role in blood–brain barrier damage by the balance of TIMP-1/MMP-9. Eur J Pharmacol 748:30–36

    CAS  PubMed  Google Scholar 

  • Wu K, Fukuda K, Xing F, Zhang Y, Sharma S, Liu Y, Chan M, Zhou X, Qasem S, Pochampally R (2015) Roles of the cyclooxygenase 2-matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem 290(15):9842–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Cai W, Thomson AW, Hu X (2016) Regulatory T cell therapy for ischemic stroke: how far from clinical translation? Transl Stroke Res 7(5):415–419. https://doi.org/10.1007/s12975-016-0476-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong X-Y, Liu L, Yang Q-W (2016) Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol 142:23–44

    CAS  PubMed  Google Scholar 

  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27(4):697–709

    CAS  PubMed  Google Scholar 

  • Yang Y, Rosenberg GA (2015) Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 1623:30–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y (2015) Attenuation of acute stroke injury in rat brain by minocycline promotes blood–brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflamm 12(1):26

    Google Scholar 

  • Yang X, Tang X, Sun P, Shi Y, Liu K, Hassan SH, Stetler RA, Chen J, Yin KJ (2017) MicroRNA-15a/16 – 1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48(7):1941–1947. https://doi.org/10.1161/strokeaha.117.017284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Tsirka SE (2014) Monocyte chemoattractant protein-1 and the blood–brain barrier. Cell Mol Life Sci 71(4):683–697

    CAS  PubMed  Google Scholar 

  • Yao X, Wang Y, Zhang D (2018) microRNA-21 confers neuroprotection against cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway. J Mol Neurosci 65(1):43–53

    CAS  PubMed  Google Scholar 

  • Yin K-J, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE (2010) Peroxisome proliferator-activated receptor δ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30(18):6398–6408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K-J, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE (2010b) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38(1):17–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chopp M, Jia L, Cui Y, Lu M, Zhang ZG (2009) Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J Cereb Blood Flow Metab 29(11):1816–1824

    CAS  PubMed  Google Scholar 

  • Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the blood-brain barrier. Cell 163(5):1064–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Ong LK, Johnson S, Nilsson M, Walker FR (2017) Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke. J Cereb Blood Flow Metab 37(12):3709–3724

    PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    CAS  PubMed  Google Scholar 

  • Zuo X, Lu J, Manaenko A, Qi X, Tang J, Mei Q, Xia Y, Hu Q (2019) MicroRNA-132 attenuates cerebral injury by protecting blood-brain-barrier in MCAO mice. Exp Neurol 316:12–19. https://doi.org/10.1016/j.expneurol.2019.03.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by AHA (16SDG31170008 to XR), NSF (1008182R to XR), WVCTSI (NIH/NIGMS U54GM104942 to XR), WVU Bridge Funding Grant (to XR) and NIH (P20 GM109098 to JWS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefang Ren.

Ethics declarations

Declarations of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvari, S., Moakedi, F., Hone, E. et al. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 35, 851–868 (2020). https://doi.org/10.1007/s11011-020-00573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00573-8

Keywords

Navigation