Skip to main content

Advertisement

Log in

Genetic diversity of Prorocentrum donghaiense population during bloom in the East China Sea revealed by microsatellite

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Blooms of the dinoflagellate Prorocentrum donghaiense occur frequently along the East China coast and Yangtze River estuary and pose a potential threat to coastal ecosystems. However, information on the genetic diversity of P. donghaiense populations in the East China Sea remains limited despite its ecological significance. Here we developed nine microsatellite markers based on transcriptome sequencing and analyzed genetic diversity and structure of P. donghaiense population in the East China Sea. We found that the Nei’s genetic diversity index of P. donghaiense population varied from 0.019 to 0.551 with an average of 0.227, whereas Shannon’s index ranged from 0.055 to 0.968 with an average of 0.431. Moreover, four genetically distinct subpopulations were identified based on STRUCTURE analysis. These results clearly indicated that P. donghaiense population during the blooms had high genetic diversity in the East China Sea, which might form the basis for variability in phenotype of P. donghaiense population and empower its capability to adapt to changing environment. Collectively our findings uncovered the genetic distinctiveness in P. donghaiense populations between 2014 and 2016 and provide valuable insights into the genetic structure and diversity of P. donghaiense blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpermann TJ, Beszteri B, John U, Tillmann U, Cembella AD (2009) Implications of life-history transitions on the population genetic structure of the toxigenic marine dinoflagellate Alexandrium tamarense. Mol Ecol 18:2122–2133

    PubMed  Google Scholar 

  • Alpermann TJ, Tillmann U, Beszteri B, Cembella AD, John U (2010) Phenotypic variation and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae). J Phycol 46:18–32

    CAS  Google Scholar 

  • Brandenburg KM, Wohlrab S, John U, Kremp A, Jerney J, Krock B, Van de Waal DB (2018) Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecol Lett 21:1561–1571

    PubMed  Google Scholar 

  • Casabianca S, Penna A, Pecchioli E, Jordi A, Basterretxea G, Vernesi C (2012) Population genetic structure and connectivity of the harmful dinoflagellate Alexandrium minutum in the Mediterranean Sea. Proc Biol Sci 279:129–138

    PubMed  Google Scholar 

  • Chen G, Rynearson TA (2016) Genetically distinct populations of a diatom co-exist during the North Atlantic spring bloom. Limnol Oceanogr 61:2165–2179

    Google Scholar 

  • Dai XF, Lu DD, Guan WB, Xia P, Wang HX, He PX, Zhang DS (2013) The correlation between Prorocentrum donghaiense blooms and the Taiwan warm current in the East China Sea - evidence for the “pelagic seed bank” hypothesis. PLoS One 8:e64188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demura M, Nakayama T, Kasai F, Kawachi M (2014) Genetic structure of Japanese Chattonella marina (Raphidophyceae) populations revealed using microsatellite markers. Phycol Res 62:102–108

    Google Scholar 

  • Dia A, Guillou L, Mauger S, Bigeard E, Marie D, Valero M, Destombe C (2014) Spatiotemporal changes in the genetic diversity of harmful algal blooms caused by the toxic dinoflagellate Alexandrium minutum. Mol Ecol 23:549–560

    CAS  PubMed  Google Scholar 

  • Duan X, Wang K, Su S, Tian R, Li Y, Chen M (2017) Denovo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L) (Hemiptera: Aphididae). PLoS One 12:e0172513

    PubMed  PubMed Central  Google Scholar 

  • Erdner DL, Richlen M, McCauley LAR, Anderson DM (2011) Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense. PLoS One 6:e22965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2010) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Google Scholar 

  • Felsenstein J (1993) PHYLIP interface package, ver 35. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Field C, Wills D (1996) Long, polymorphic microsatellites in simple organisms. Proc Biol Sci 263:209–215

    CAS  PubMed  Google Scholar 

  • Gao YD, Sassenhagena I, Richlen ML, Anderson DM, Martinc JL, Erdner DL (2019) Spatiotemporal genetic structure of regional-scale Alexandrium catenella dinoflagellate blooms explained by extensive dispersal and environmental selection. Harmful Algae 86:46–54

    PubMed  PubMed Central  Google Scholar 

  • Henrichs DW, Renshaw MA, Gold JR, Campbell L (2013) Genetic diversity among clonal isolates of Karenia brevis as measured with microsatellite markers. Harmful Algae 21:30–35

    Google Scholar 

  • Hu Z, Mulholland MR, Duan SS, Xu N (2012) Effects of nitrogen supply and its composition on the growth of Prorocentrum donghaiense. Harmful Algae 13:72–82

    CAS  Google Scholar 

  • Huang X, Huang B, Chen J, Liu X (2016) Cellular responses of the dinoflagellate Prorocentrum donghaiense Lu to phosphate limitation and chronological ageing. J Plankton Res 38:83–93

    CAS  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed  PubMed Central  Google Scholar 

  • Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, Penna A (2012) Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol 2:1195–1207

    PubMed  PubMed Central  Google Scholar 

  • Le Gac M, Metegnier G, Chomérat N, Malestroit P, Quéré J, Bouchez O, Siano R, Destombe C, Guillou L, Chapelle A (2016) Evolutionary processes and cellular functions underlying divergence in Alexandrium minutum. Mol Ecol 25:5129–5143

    PubMed  Google Scholar 

  • Lebret K, Kritzberg ES, Figueroa R, Rengefors K (2012) Genetic diversity within and genetic differentiation between blooms of a microalgal species. Environ Microbiol 14:2395–2404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    CAS  PubMed  Google Scholar 

  • Li J, Glibert PM, Zhou MJ, Lu SH, Lu DD (2009) Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Mar Ecol Prog Ser 383:11–26

    CAS  Google Scholar 

  • Li J, Glibert PM, Zhou MJ (2010) Temporal and spatial variability in nitrogen uptake kinetics during harmful dinoflagellate blooms in the East China Sea. Harmful Algae 9:531–539

    CAS  Google Scholar 

  • Li Y, Huang HJ, Li HY, Liu JS, Yang WD (2016) Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite. Mar Pollut Bull 111:237–246

    CAS  PubMed  Google Scholar 

  • Lin JN, Yan T, Zhang QC, Wang YF, Liu Q, Zhou MJ (2014) In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Mar Pollut Bull 88:302–310

    CAS  PubMed  Google Scholar 

  • Logares R, Boltovskoy A, Bensch S, Laybourn-Parry J, Rengefors K (2009) Genetic diversity patterns in five protist species occurring in lakes. Protist 160:301–317

    CAS  PubMed  Google Scholar 

  • Lu DD, Goebel J (2001) Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp nov from the East China Sea. Chin J Oceanol Limnol 19:337–344

    Google Scholar 

  • Lu D, Goebel J, Qi YZ, Zou JZ, Han XT, Gao YH, Li YG (2005) Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae 4:493–505

    CAS  Google Scholar 

  • Masseret E, Grzebyk D, Nagai S, Genovesi B, Lasserre B, Laabir M, Berrebi P (2009) Unexpected genetic diversity among and within populations of the toxic dinoflagellate Alexandrium catenella as revealed by nuclear microsatellite markers. Appl Environ Microbiol 75:2037–2045

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCauley LAR, Erdner DL, Nagai S, Richlen ML, Anderson DM (2009) Biogeographic analysis of the globally distributed harmful algal bloom species Alexandrium minutum (Dinophyceae) based on rRNA gene sequences and microsatellite markers. J Phycol 45:454–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medlin LK, Lange M, Nöthig EM (2000) Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton. Antarct Sci 12:325–333

    Google Scholar 

  • Mercière M, Laybats A, Carasco-Lacombe C, Tan JS, Klopp C, Durand-Gasselin T, Alwee SSRS, Camus-Kulandaivelu L, Breton F (2015) Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. Mycol Prog 14:103

    Google Scholar 

  • Nagai S, Lian C, Hamaguchi M, Matsuyama Y, Itakura S, Hogetsu T (2004) Development of microsatellite markers in the toxic dinoflagellate Alexandrium tamarense (Dinophyceae). Mol Ecol Notes 4:83–85

    CAS  Google Scholar 

  • Nishitani G, Nagai S, Lian CL, Yamaguchi H, Sakamoto S, Yoshimatsu S, Oyama K, Itakura S, Yamaguchi M (2007) Development of compound microsatellite markers in the harmful red tide species Chattonella ovata (Raphidophyceae). Mol Ecol Notes 7:1251–1253

    CAS  Google Scholar 

  • Ou LJ, Wang D, Huang BQ, Hong HS, Qi YZ, Lu SH (2008) Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res 30:1007–1017

    CAS  Google Scholar 

  • Ou LJ, Huang BQ, Hong HS, Qi YZ, Lu SH (2010) Comparative alkaline phosphatase characteristics of the algal bloom dinoflagellates Prorocentrun donghaiense and Alexandrium catanella, and the diatom Skeletonema costatum. J Phycol 46:260–265

    Google Scholar 

  • Paredes J, Varela D, Martínez C, Zúñiga A, Correa K, Villarroel A, Olivares B (2019) Population genetic structure at the northern edge of the distribution of Alexandrium catenella in the Patagonian Fjords and its expansion along the open Pacific Ocean coast. Front Mar Sci 5:532

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Peng J, Zhang L, Li X, Cui C, Wo R, Tian P, Li Y, Liu Y (2016) Development of genic SSR markers from an assembled Saccharina japonica genome. J Appl Phycol 28:2479–2484

    CAS  Google Scholar 

  • Qi Y, Wang Y (2003) What the Prorocentrum species should be? A review on identification of a Prorocentrum species from the East China Sea. Ying Yong Sheng Tai Xue Bao 14:1188–1190 (In Chinese)

    PubMed  Google Scholar 

  • Rengefors K, Kremp A, Reusch TBH, Wood AM (2017) Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J Plankton Res 39:165–179

    Google Scholar 

  • Renshaw MA, Soltysiak K, Arreola D, Loret P, Patton JC, Gold JR, Campbell L (2006) Microsatellite DNA markers for population genetic studies in the dinoflagellate Karenia brevis. Mol Ecol Notes 6:1157–1159

    CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    PubMed  Google Scholar 

  • Richlen ML, Erdner DL, McCauley LAR, Libera K, Anderson DM (2012) Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA. Ecol Evol 2:2583–2594

    Google Scholar 

  • Rynearson TA, Armbrust E (2000) DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr 45:1329–1340

    Google Scholar 

  • Rynearson TA, Armbrust E (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol Ecol 14:1631–1640

    PubMed  Google Scholar 

  • Santos S, Gutierrez-Rodriguez C, Lasker H, Coffroth M (2003) Symbiodinium sp associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120

    Google Scholar 

  • Sassenhagen I, Gao Y, Lozano-Duque Y, Parsons ML, Smith TB, Erdner DL (2018) Comparison of spatial and temporal genetic differentiation in a harmful dinoflagellate species emphasizes impact of local processes. Front Mar Sci 5:393

    Google Scholar 

  • Sehein T, Richlen ML, Nagai S, Yasuike M, Nakamura Y, Anderson DM (2016) Characterization of 17 new microsatellite markers for the dinoflagellate Alexandrium fundyense (Dinophyceae), a harmful algal bloom species. J Appl Phycol 28:1677–1681

    CAS  PubMed  Google Scholar 

  • Shi X, Lin X, Li L, Li M, Palenik B, Lin S (2017) Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate. ISME J 11:2209–2218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sjöqvist C, Kremp A (2016) Genetic diversity affects ecological performance and stress response of marine diatom populations. ISME J 10:2755–2766

    PubMed  PubMed Central  Google Scholar 

  • Torales SL, Rivarola M, Gonzalez S, Inza MV, Pomponio MF, Fernández P, Acuña CV, Zelener N, Fornés L, Hopp HE, Paniego NB, Poltri SNM (2018) De novo transcriptome sequencing and SSR markers development for Cedrela balansae CDC, a native tree species of northwest Argentina. PLoS One 13:e0203768

    PubMed  PubMed Central  Google Scholar 

  • Xie C, Chen C, Ji D, Xu Y (2009) Characterization, development and exploitation of EST derived microsatellites in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 21:367–374

    CAS  Google Scholar 

  • Zhang YJ, Zhang SF, He ZP, Lin L, Wang DZ (2015) Proteomic analysis provides new insights into the adaptive response of a dinoflagellate Prorocentrum donghaiense to changing ambient nitrogen. Plant Cell Environ 38:2128–2142

    CAS  PubMed  Google Scholar 

  • Zhang SF, Yuan CJ, Chen Y, Lin L, Wang DZ (2019) Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense. Sci Total Environ 692:1037–1047

    CAS  PubMed  Google Scholar 

  • Zhou M (2010) Environmental settings and harmful algal blooms in the sea area adjacent to the Changjiang river estuary. In: Ishimatsu A, Lie H-J (eds) Coastal Environmental and Ecosystem Issues of the East China Sea, Terrapub, Tokyo pp 133–149

Download references

Acknowledgments

We thank Prof. Da-zhi Wang in Xiamen University, China, who kindly provides the transcriptome sequencing of P. donghaiense.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2017YFC1404300) and the National Natural Science Foundation of China (Nos. 41230961, 41176088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Hj., Gan, Cq., Xiao, Sw. et al. Genetic diversity of Prorocentrum donghaiense population during bloom in the East China Sea revealed by microsatellite. J Appl Phycol 32, 1851–1862 (2020). https://doi.org/10.1007/s10811-020-02113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02113-4

Keywords

Navigation