Skip to main content
Log in

Influence of Thermal Expansion on Potential and Rotational Components of Turbulent Velocity Field Within and Upstream of Premixed Flame Brush

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct Numerical Simulation (DNS) data obtained earlier from two statistically stationary, 1D, planar, weakly turbulent premixed flames are analyzed in order to examine the influence of combustion-induced thermal expansion on the flow structure within the mean flame brushes and upstream of them. The two flames are associated with the flamelet combustion regime and are characterized by significantly different density ratios, i.e. \(\sigma = 7.53\) and 2.5. The Helmholtz–Hodge decomposition is applied to the DNS data in order to extract rotational and potential velocity fields. Comparison of the two fields shows that combustion-induced thermal expansion can significantly change the local structure of the incoming constant-density turbulent flow of unburned reactants by significantly increasing the relative magnitude of the potential velocity fluctuations when compared to the rotational velocity fluctuations in the flow. Such effects are documented not only within the mean flame brush, but also well upstream of it. The effect magnitude is increased by the density ratio \(\sigma\), with the effects being well (weakly) pronounced at \(\sigma = 7.53\) (2.5, respectively). Moreover, the potential and rotational velocity fields can cause opposite variations of the local area of an iso-scalar surface \(c\left( {{\mathbf{x}},t} \right) = {\text{const}}\) within flamelets by generating the local strain rates of opposite signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. While the Kolmogorov theory should not be applied to turbulence generated in the present DNS due to too low Reynolds number, weakly turbulent premixed combustion characterized by \(u^{{\prime }} /S_{L} = {\text{O}}\left( 1 \right)\) can occur at high \(Re_{t} \gg 1\) if a ratio of \(L/\delta_{L}\) is sufficiently large.

References

  • Abraham, R., Marsden, J.E., Ratiu, T.: Tensor Analysis and Applications, 2nd edn. Springer, New York (1988)

    MATH  Google Scholar 

  • Aspden, A.J., Day, M.J., Bell, J.B.: Towards the distributed burning regime in turbulent premixed flames. J. Fluid Mech. 871, 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  • Bobbitt, B., Lapointe, S., Blanquart, G.: Vorticity transformation in high Karlovitz number premixed flames. Phys. Fluids 28, 015101 (2016)

    Google Scholar 

  • Borghi, R.: (1984) On the structure and morphology of turbulent premixed flames. In: Casci, S., Bruno, C. (eds.) Recent Advances in Aerospace Science, pp. 117–138. Plenum, Oxford (1984)

    Google Scholar 

  • Bray, K.N.C.: Turbulent transport in flames. Proc. R. Soc. Lond. A 451, 231–256 (1995)

    MathSciNet  MATH  Google Scholar 

  • Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Scalar dissipation and mean reaction rates in premixed turbulent combustion. Combust. Flame 158, 2017–2022 (2011)

    Google Scholar 

  • Brearley, P., Ahmed, U., Chakraborty, N., Lipatnikov, A.: Statistical behaviors of conditioned two-point second-order structure functions in turbulent premixed flames in different combustion regimes. Phys. Fluids 31, 115109 (2019)

    Google Scholar 

  • Candel, S., Poinsot, T.: Flame stretch and the balance equation for the flame area. Combust. Sci. Tech. 170, 1–15 (1990)

    Google Scholar 

  • Carlsson, H., Yu, R., Bai, X.-S.: Flame structure analysis for categorization of lean premixed CH4/air and H2/air flames at high Karlovitz numbers: direct numerical simulation studies. Proc. Combust. Inst. 35, 1425–1432 (2015)

    Google Scholar 

  • Carter, C.D., Hammack, S., Lee, T.: High-speed flamefront imaging in premixed turbulent flames using planar laser-induced fluorescence of the CH C−X band. Combust. Flame 168, 66–74 (2016)

    Google Scholar 

  • Cecere, D., Giacomazzi, E., Arcidiacono, N.M., Picchia, F.R.: Direct numerical simulation of a turbulent lean premixed CH4/H2-air slot flame. Combust. Flame 165, 384–401 (2016)

    Google Scholar 

  • Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103 (2007)

    MATH  Google Scholar 

  • Chaudhuri, S., Kolla, H., Dave, H.L., Hawkes, E.R., Chen, J.H., Law, C.K.: Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273–285 (2017)

    Google Scholar 

  • Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1993)

    MATH  Google Scholar 

  • Chowdhury, B.R., Cetegen, B.M.: Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames. Combust. Flame 178, 301–328 (2017)

    Google Scholar 

  • Clavin, P.: Dynamical behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 1–59 (1985)

    Google Scholar 

  • Dave, H.L., Mohan, A., Chaudhuri, S.: Genesis and evolution of premixed flames in turbulence. Combust. Flame 196, 386–399 (2018)

    Google Scholar 

  • Denaro, F.M.: On the application of Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions. Int. J. Numer. Methods Fluids 43, 43–69 (2003)

    MathSciNet  MATH  Google Scholar 

  • Günther, R.: Turbulence properties of flames and their measurement. Prog. Energy Combust. Sci. 9, 105–154 (1983)

    Google Scholar 

  • Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23, 125111 (2011)

    MATH  Google Scholar 

  • Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Intermittency in premixed turbulent reacting flows. Phys. Fluids 24, 075111 (2012)

    Google Scholar 

  • Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.: Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478–488 (2004)

    Google Scholar 

  • Karlovitz, B., Denniston, D.W., Wells, F.E.: Investigation of turbulent flames. J. Chem. Phys. 19, 541–547 (1951)

    Google Scholar 

  • Kim, S.H.: Leading points and heat release effects in turbulent premixed flames. Proc. Combust. Inst. 36, 2017–2024 (2017)

    Google Scholar 

  • Kraichnan, R.H.: Decay of isotropic turbulence in the direct-interaction approximation. Phys. Fluids 7, 1030–1048 (1964)

    MathSciNet  Google Scholar 

  • Kuznetsov, V.R., Sabelnikov, V.A.: Turbulence and Combustion. Hemisphere, Washington (1990)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31, 1–73 (2005)

    MATH  Google Scholar 

  • Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)

    Google Scholar 

  • Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames. Phys. Fluids 26, 105104 (2014)

    Google Scholar 

  • Lipatnikov, A.N., Chomiak, J., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35, 1401–1408 (2015a)

    Google Scholar 

  • Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: DNS assessment of relation between mean reaction and scalar dissipation rates in the flamelet regime of premixed turbulent combustion. Combust. Theory Modell. 19, 309–328 (2015b)

    MathSciNet  Google Scholar 

  • Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S., Hasegawa, T., Chakraborty, N.: DNS assessment of a simple model for evaluating velocity conditioned to unburned gas in premixed turbulent flames. Flow Turbul. Combust. 94, 513–526 (2015c)

    Google Scholar 

  • Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Flamelet perturbations and flame surface density transport in weakly turbulent premixed combustion. Combust. Theory Modell. 21, 205–227 (2017)

    MathSciNet  Google Scholar 

  • Lipatnikov, A.N., Chomiak, J., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: A DNS study of the physical mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames. Combust. Theory Modell. 22, 131–155 (2018a)

    MathSciNet  Google Scholar 

  • Lipatnikov, A.N., Sabelnikov, V.A., Chakraborty, N., Nishiki, S., Hasegawa, T.: A DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow. Flow Turbul. Combust. 100, 75–92 (2018b)

    Google Scholar 

  • Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows. Phys. Fluids 30, 085101 (2018c)

    Google Scholar 

  • Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: Does flame-generated vorticity increase turbulent burning velocity? Phys. Fluids 30, 081702 (2018d)

    Google Scholar 

  • Lipatnikov, A.N., Chakraborty, N., Sabelnikov, V.A.: Transport equations for reaction rate in laminar and turbulent premixed flames characterized by non-unity Lewis number. Int. J. Hydrogen Energy 43, 21060–21069 (2018e)

    Google Scholar 

  • Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: A DNS assessment of linear relations between filtered reaction rate, flame surface density, and scalar dissipation rate in a weakly turbulent premixed flame. Combust. Theory Modell. 23, 245–260 (2019a)

    MathSciNet  Google Scholar 

  • Lipatnikov, A.N., Sabelnikov, V.A., Nishiki, S., Hasegawa, T.: A direct numerical simulation study of the influence of flame-generated vorticity on reaction-zone-surface area in weakly turbulent premixed combustion. Phys. Fluids 31, 055101 (2019b)

    Google Scholar 

  • Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: Closure relations for fluxes of flame surface density and scalar dissipation rate in turbulent premixed flames. Fluids 4, 43 (2019c)

    Google Scholar 

  • MacArt, J.F., Grenga, T., Mueller, M.E.: Effects of combustion heat release on velocity and scalar statistics in turbulent premixed jet flames at low and high Karlovitz numbers. Combust. Flame 191, 468–485 (2018)

    Google Scholar 

  • Matalon, M.: On flame stretch. Combust. Sci. Tech. 31, 169–182 (1983)

    Google Scholar 

  • Matalon, M.: Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163–191 (2007)

    MathSciNet  MATH  Google Scholar 

  • Minamoto, Y., Yenerdag, B., Tanahashi, M.: Morphology and structure of hydrogen-air turbulent premixed flames. Combust. Flame 192, 369–383 (2018)

    Google Scholar 

  • Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theory Modell. 12, 671–698 (2008)

    MATH  Google Scholar 

  • Mura, A., Robin, V., Champion, M., Hasegawa, T.: Small scale features of velocity and scalar fields in turbulent premixed flames. Flow Turbul. Combust. 82, 339–358 (2009)

    MATH  Google Scholar 

  • Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modeling of flame-generated turbulence based on direct numerical simulation databases. Proc. Combust. Inst. 29, 2017–2022 (2002)

    Google Scholar 

  • Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theory Modell. 10, 39–55 (2006)

    MATH  Google Scholar 

  • Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Pope, S.B.: The evolution of surface in turbulence. Int. J. Eng. Sci. 26, 445–469 (1988)

    MathSciNet  MATH  Google Scholar 

  • Robin, V., Mura, A., Champion, M., Hasegawa, T.: Direct and indirect thermal expansion effects in turbulent premixed flames. Combust. Sci. Technol. 182, 449–464 (2010)

    MATH  Google Scholar 

  • Robin, V., Mura, A., Champion, M.: Modeling of the effects of thermal expansion on scalar turbulent fluxes in turbulent premixed flames. J. Fluid Mech. 689, 149–182 (2011)

    MathSciNet  MATH  Google Scholar 

  • Sabelnikov, V.A., Lipatnikov, A.N.: Transition from pulled to pushed fronts in premixed turbulent combustion: theoretical and numerical study. Combust. Flame 162, 2893–2903 (2015)

    Google Scholar 

  • Sabelnikov, V.A., Lipatnikov, A.N.: Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu. Rev. Fluid Mech. 49, 91–117 (2017)

    MathSciNet  MATH  Google Scholar 

  • Sabelnikov, V.A., Lipatnikov, A.N., Chakraborty, N., Nishiki, S., Hasegawa, T.: A transport equation for reaction rate in turbulent flows. Phys. Fluids 28, 081701 (2016)

    Google Scholar 

  • Sabelnikov, V.A., Lipatnikov, A.N., Chakraborty, N., Nishiki, S., Hasegawa, T.: A balance equation for the mean rate of product creation in premixed turbulent flames. Proc. Combust. Inst. 36, 1893–1901 (2017)

    Google Scholar 

  • Sabelnikov, V.A., Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: Application of conditioned structure functions to exploring influence of premixed combustion on two-point turbulence statistics. Proc. Combust. Inst. 37, 2433–2441 (2019a)

    MATH  Google Scholar 

  • Sabelnikov, V.A., Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions. J. Fluid Mech. 867, 45–76 (2019b)

    MathSciNet  MATH  Google Scholar 

  • Scurlock, A.C., Grover, J.H.: Propagation of turbulent flames. Proc. Combust. Inst. 4, 645–658 (1953)

    Google Scholar 

  • Sponfeldner, T., Boxx, I., Beyrau, F., Hardalupas, Y., Meier, W., Taylor, A.M.K.P.: On the alignment of fluid-dynamic principal strain-rates with the 3D flamelet-normal in a premixed turbulent V-flame. Proc. Combust. Inst. 35, 1269–1276 (2015)

    Google Scholar 

  • Steinberg, A.M., Driscoll, J.F., Swaminathan, N.: Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust. Flame 159, 2576–2588 (2012)

    Google Scholar 

  • Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)

    MathSciNet  MATH  Google Scholar 

  • Tsinober, A.: An Informal Conceptual Introduction to Turbulence. Springer, New York (2009)

    MATH  Google Scholar 

  • Uranakara, H.A., Chaudhuri, S., Dave, H.L., Arias, P.G., Im, H.G.: A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220–240 (2016)

    Google Scholar 

  • Venkateswaran, P., Marshall, A., Seitzman, J., Lieuwen, T.: Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts. Combust. Flame 162, 375–387 (2015)

    Google Scholar 

  • Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Google Scholar 

  • Wang, H., Hawkes, E.R., Zhou, B., Chen, J.H., Li, Z., Aldén, M.: A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number. Proc. Combust. Inst. 36, 2045–2053 (2017)

    Google Scholar 

  • Whitman, S.H.R., Towery, C.A.Z., Poludnenko, A.Y., Hamlington, P.E.: Scaling and collapse of conditional velocity structure functions in turbulent premixed flames. Proc. Combust. Inst. 37, 2527–2535 (2019)

    Google Scholar 

  • Williams, F.A.: Combustion Theory, 2nd edn, p. 412. Benjamin/Cummings, San Francisco (1985)

    Google Scholar 

  • Zhao, S., Er-Raiy, A., Bouali, Z., Mura, A.: Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames. Combust. Flame 198, 436–464 (2018)

    Google Scholar 

Download references

Acknowledgements

ANL gratefully acknowledges the financial support by the Combustion Engine Research Center. VAS gratefully acknowledges the financial support by ONERA and by the Grant of the Ministry of Education and Science of the Russian Federation (Contract No. 14.G39.31.0001 of 13.02.2017).

Funding

This study was funded by the Combustion Engine Research Center (CERC) and the Ministry of Education and Science of the Russian Federation (Grant Number 14.G39.31.0001 of 13.02.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sabelnikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatnikov, A.N., Sabelnikov, V.A., Nikitin, N.V. et al. Influence of Thermal Expansion on Potential and Rotational Components of Turbulent Velocity Field Within and Upstream of Premixed Flame Brush. Flow Turbulence Combust 106, 1111–1124 (2021). https://doi.org/10.1007/s10494-020-00131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00131-3

Keywords

Navigation