Skip to main content

Advertisement

Log in

Challenges to Levulinic Acid and Humins Valuation in the Sugarcane Bagasse Biorefinery Concept

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Levulinic acid (LA) is currently one of the most promising chemicals derived from biomass. However, its large-scale production is hampered by the challenges in biomass hydrolysis and the poor selectivity due to the formation of humins (HUs). This study addresses these challenges using the biorefinery concept of biomass fractionation. A three-step process (pretreatment, delignification, and acid-catalyzed conversion) was optimized to produce LA from SCB considering the yield (YLA), efficiency (ELA), and concentration of LA (CLA) as functions of temperature, reaction time, acid concentration, and solids loading. By means of a multi-response optimization, values of YLA (20.9 ± 1.25 g/100gISF-D), ELA (37.5 ± 2.24 mol%), and CLA (25.1 ± 1.50 g/L) were obtained at 180 °C, 75 min, 7.0% w/v H2SO4, and 12.0% w/v of solids loading. Six scenarios for production of LA were analyzed in terms of yields of LA, HUs, lignin, and other sugar-derived products considering one-, two-, or three-step processes. The economic analysis indicated that the three-step scenario delivers better economic figures given that other valuable biomass fractions (hemicellulosic sugars and lignin) are better used and contribute to the overall economic performance of the process. The results also demonstrate the burden of HUs in the economics of the process because it was shown that the largest production of LA is also linked to the largest formation of HUs, which does not necessarily yield the best economic results. These findings indicate the importance of added value by-products for the profitable production of LA in biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D’Amato D, Korhonen J, Toppinen A (2019) Circular, green, and bio economy: how do companies in land-use intensive sectors align with sustainability concepts? Ecol Econ 158:116–133

    Article  Google Scholar 

  2. Ingle K, Vitkin E, Robin A et al (2018) Macroalgae biorefinery from Kappaphycus alvarezii: conversion modeling and performance prediction for India and Philippines as examples. Bioenergy Res 11:22–32

    Article  CAS  Google Scholar 

  3. Liu C, Wu S, Zhang H, Xiao R (2019) Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol 191:181–201

    Article  CAS  Google Scholar 

  4. CONAB (2019) Acompanhamento da Safra Brasileira: Cana-de-açúcar, terceiro levantamento. Companhia Nacional de Abastecimento, Brasília. https://www.conab.gov.br/info-agro/safras/cana. Accessed 13 Nov 2019

  5. Rodriguez RP, Manochio C, Moraes B d S (2019) Energy integration of biogas production in an integrated 1G2G sugarcane biorefinery: modeling and simulation. Bioenergy Res 12:158–167. https://doi.org/10.1007/s12155-018-9950-z

    Article  CAS  Google Scholar 

  6. Bevilaqua DB, Rambo MKD, Rizzetti TM et al (2013) Cleaner production: levulinic acid from rice husks. J Clean Prod 47:96–101. https://doi.org/10.1016/j.jclepro.2013.01.035

    Article  CAS  Google Scholar 

  7. Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565. https://doi.org/10.1016/j.rser.2015.06.032

    Article  CAS  Google Scholar 

  8. Leal Silva JF, Grekin R, Mariano AP, Maciel Filho R (2018) Making levulinic acid and ethyl levulinate economically viable: a worldwide technoeconomic and environmental assessment of possible routes. Energy Technol 6:613–639. https://doi.org/10.1002/ente.201700594

    Article  CAS  Google Scholar 

  9. Fitzpatrick S. (1997) U.S. patent 5,608,105 production of levulinic acid from carbohydrate-containing materials

  10. Pradipta MSA, Purnamasari NR, Pradana YS (2019) Levulinic acid synthesis from Indonesian sugarcane bagasse using two-step acid catalyzed treatment. AIP Conf Proc 2085:1–8

    Google Scholar 

  11. Ji H, Dong C, Yang G, Pang Z (2019) Production of levulinic acid from lignocellulosic biomass with a recyclable aromatic acid and its kinetic study. BioResources 14:725–736

    CAS  Google Scholar 

  12. Jeong H, Jang S, Hong C, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG (2017) Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid. Bioresour Technol 225:183–190

    Article  CAS  Google Scholar 

  13. Liang C, Hu Y, Wang Y et al (2018) Production of levulinic acid from corn cob residue in a fed-batch acid hydrolysis process. Process Biochem 73:124–131

    Article  CAS  Google Scholar 

  14. Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sust Energ Rev 94:340–362. https://doi.org/10.1016/J.RSER.2018.06.016

    Article  CAS  Google Scholar 

  15. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008). Determination of extractives in biomass: laboratory analytical procedure (LAP). Technical report NREL/TP-510-42619. National Renewable Energy Laboratory, Golden, Colorado. https://www.nrel.gov/docs/gen/fy08/42619.pdf. Accessed 5 May 2019

  16. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012). Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). Technical report NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, Colorado. https://www.nrel.gov/docs/gen/fy13/42618.pdf. Accessed 5 May 2019

  17. Canilha L, Santos VTO, Rocha GJM, Almeida e Silva JB, Giulietti M, Silva SS, Felipe MG, Ferraz A, Milagres AM, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475

    Article  CAS  Google Scholar 

  18. Gouveia ER, Nascimento RT d, Souto-Maior AM, Rocha GJ d M (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1500–1503

    Article  CAS  Google Scholar 

  19. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008). Determination of sugars, byproducts, and degradation products in liquid fraction process samples: laboratory analytical procedure (LAP). Technical report NREL/TP-510-42623. National Renewable Energy Laboratory, Golden, Colorado. https://www.nrel.gov/docs/gen/fy08/42623.pdf. Accessed 5 May 2019 

  20. Ramli NAS, Amin NAS (2014) Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Process Technol 128:490–498. https://doi.org/10.1016/j.fuproc.2014.08.011

    Article  CAS  Google Scholar 

  21. Raissi S, Farsani R-E (2009) Statistical process optimization through multi-response surface methodology. Int J Math Comput Sci 3:247–251

    Google Scholar 

  22. Sunphorka S, Chavasiri W, Oshima Y, Ngamprasertsith S (2012) Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: optimization by response surface methodology. Int J Food Eng 8(3):26. https://doi.org/10.1515/1556-3758.2262

  23. Hoang TMC, Van Eck ERH, Bula WP et al (2015) Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chem 17:959–972

    Article  CAS  Google Scholar 

  24. Dias MOS, Junqueira TL, Cavalett O et al (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103:152–161. https://doi.org/10.1016/j.biortech.2011.09.120

    Article  CAS  PubMed  Google Scholar 

  25. Leal Silva JF (2018) Process development for sugarcane conversion to ethyl levulinate: a route for a viable biodiesel additive. Dissertation, University of Campinas

  26. Leal Silva JF, Mariano AP, Maciel Filho R (2018) Economic potential of 2-methyltetrahydrofuran (MTHF) and ethyl levulinate (EL) produced from hemicelluloses-derived furfural. Biomass Bioenergy 119:492–502. https://doi.org/10.1016/j.biombioe.2018.10.008

    Article  CAS  Google Scholar 

  27. Ľudmila H, Michal J, Andrea Š, Aleš H (2015) Lignin, potential products and their market value. Wood Res 60:973–986

    Google Scholar 

  28. 360 Market Updates (2020) Global levulinic acid market research report 2020. Pune

  29. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Biorefineries-industrial processes and products: status quo and future directions. Wiley-VCH Verlag GmbH, Weinheim, pp 139–164

    Google Scholar 

  30. Dussan K, Girisuta B, Haverty D, Leahy JJ, Hayes MH (2013) Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour Technol 149:216–224. https://doi.org/10.1016/j.biortech.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  31. Raspolli Galletti AM, Antonetti C, De Luise V et al (2012) Levulinic acid production from waste biomass. BioResources 7:1824–1835. https://doi.org/10.15376/biores.7.2.1824-1835

    Article  Google Scholar 

  32. Fleig OP, Lopes ES, Rivera EC et al (2018) Concept of rice husk biorefining for levulinic acid production integrating three steps: multi-response optimization, new perceptions and limitations. Process Biochem 65:146–156

    Article  CAS  Google Scholar 

  33. Kim HS, Kim SK, Jeong GT (2018) Catalytic conversion of glucose into levulinic and formic acids using aqueous Brønsted acid. J Ind Eng Chem 63:48–56

    Article  CAS  Google Scholar 

  34. Jeong GT (2014) Production of levulinic acid from glucosamine by dilute-acid catalyzed hydrothermal process. Ind Crop Prod 62:77–83

    Article  CAS  Google Scholar 

  35. Kang M, Kim SW, Kim J-W et al (2013) Optimization of levulinic acid production from Gelidium amansii. Renew Energy 54:173–179. https://doi.org/10.1016/j.renene.2012.08.028

    Article  CAS  Google Scholar 

  36. Ramli NAS, Amin NAS (2017) Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. Bioenergy Res 10:50–63

    Article  CAS  Google Scholar 

  37. Muñoz T, Rache LY, Rojas HA, Romanelli GP, Martinez JJ, Luque R (2020) Production of 5-hydroxymethyl−2-furan carboxylic acid by Serratia marcescens from crude 5-hydroxymethylfurfural. Biochem Eng J 154:107421. https://doi.org/10.1016/j.bej.2019.107421

  38. Park MR, Kim SK, Jeong GT (2018) Optimization of the levulinic acid production from the red macroalga, Gracilaria verrucosa using methanesulfonic acid. Algal Res 31:116–121

    Article  Google Scholar 

  39. Fang Q, Hanna MA (2002) Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour Technol 81:187–192. https://doi.org/10.1016/S0960-8524(01)00144-4

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Zhang C, Lin Q et al (2018) Solid acid-induced hydrothermal treatment of bagasse for production of furfural and levulinic acid by a two-step process. Ind Crop Prod 123:118–127

    Article  CAS  Google Scholar 

  41. Chamnankid B, Ratanatawanate C, Faungnawakij K (2014) Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water. Chem Eng J 258:341–347. https://doi.org/10.1016/j.cej.2014.07.036

    Article  CAS  Google Scholar 

  42. Jeong H, Park SY, Ryu GH et al (2018) Catalytic conversion of hemicellulosic sugars derived from biomass to levulinic acid. Catal Commun 117:19–25

    Article  CAS  Google Scholar 

  43. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam

  44. Acquah GE, Via BK, Fasina OO, Eckhardt LG (2016) Rapid quantitative analysis of forest biomass using Fourier transform infrared spectroscopy and partial least squares regression. J Anal Methods Chem 2016:1–10

    Article  Google Scholar 

  45. van Zandvoort I, Wang Y, Rasrendra CB, van Eck E, Bruijnincx PC, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of Humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6:1745–1758. https://doi.org/10.1002/cssc.201300332

    Article  CAS  PubMed  Google Scholar 

  46. Van Zandvoort I, Koers EJ, Weingarth M et al (2015) Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chem 17:4383–4392. https://doi.org/10.1039/c5gc00327j

    Article  CAS  Google Scholar 

  47. Rasrendra CB, Windt M, Wang Y et al (2013) Journal of analytical and applied pyrolysis experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars. J Anal Appl Pyrolysis 104:299–307. https://doi.org/10.1016/j.jaap.2013.07.003

    Article  CAS  Google Scholar 

  48. Liang J, Chen X, Wang L et al (2016) Hydrolysis behaviors of sugarcane bagasse pith in subcritical carbon dioxide–water. RSC Adv 6:99322–99330

    Article  CAS  Google Scholar 

  49. Ma Z, Chen D, Gu J et al (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers Manag 89:251–259

    Article  CAS  Google Scholar 

  50. Weingarten R, Cho J, Xing R et al (2012) Kinetics and reaction engineering of Levulinic acid production from aqueous glucose solutions. ChemSusChem 5:1280–1290. https://doi.org/10.1002/cssc.201100717

    Article  CAS  PubMed  Google Scholar 

  51. Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574

    Article  CAS  Google Scholar 

  52. Hu X, Wu L, Wang Y, Song Y, Mourant D, Gunawan R, Gholizadeh M, Li CZ (2013) Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate. Bioresour Technol 133:469–474

    Article  CAS  Google Scholar 

  53. Ordomsky VV, Sushkevich VL, Schouten JC et al (2013) Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J Catal 300:37–46

    Article  CAS  Google Scholar 

  54. Filiciotto L, Balu AM, Van der Waal JC, Luque R (2018) Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catal Today 302:2–15

    Article  CAS  Google Scholar 

  55. Kang S, Pan J, Gu G et al (2018) Sequential production of levulinic acid and porous carbon material from cellulose. Materials (Basel) 11:1–15. https://doi.org/10.3390/ma11081408

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by São Paulo Research Foundation—FAPESP (grant numbers 2015/17592-3, 2015/20630-4, 2016/10450-1, and 2017/23335-9) and National Council for Scientific and Technological Development—CNPq (Public investment by Universal Call MCTIC/CNPq no. 28/2018 and grant number 408149/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Plazas Tovar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, E.S., Leal Silva, J.F., Rivera, E.C. et al. Challenges to Levulinic Acid and Humins Valuation in the Sugarcane Bagasse Biorefinery Concept. Bioenerg. Res. 13, 757–774 (2020). https://doi.org/10.1007/s12155-020-10124-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10124-9

Keywords

Navigation