Skip to main content
Log in

Rate effect in inclined fibre pull-out for smooth and hooked-end fibres: a numerical study

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Based on a numerical model to simulate the static behaviour of a smooth fibre extracted from a cementitious matrix, a rate dependent friction law, widely used in earthquake engineering for steady-state slip phenomena, is proposed to capture the rate effect observed in dynamic pull-out tests for both smooth and hooked-end fibres. After calibrating the friction coefficients with the experimental results of smooth fibres, the model is subsequently applied to predict the pullout behaviour of both smooth and hooked-end fibres at different inclination angles (\(0^{\circ }\), \(30^{\circ }\) and \(60^{\circ }\)) loaded at three different velocities (0.01, 0.1 and 1 mm/s). The global tendency of all the pull-out curves was captured, fibre’s cross sectional deformations were also reproduced remarkably well. Moreover, the developed model helps to cast light on the different mechanisms related to the pull-out process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdallah S, Fan M, Rees D (2018) Bonding mechanisms and strengths of steel fiber reinforced cementitious composites: overview. J Mater Civil Eng 30(3):04018001

    Article  Google Scholar 

  • Abrishambaf A, Barros JAO, Cunha VMCF, Frazão C (2017) Time dependent behaviour of fibre pull-out in self-compacting concrete. Cem Concrete Compos 77:14–28

    Article  CAS  Google Scholar 

  • Abu-Lebdeh T, Hamoush S, Heard W, Zornig B (2010) Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete. Am J Eng Appl Sci 2:454–466

    Article  Google Scholar 

  • ACI Committee 544 (2001) State-of-the-art report on fiber reinforced concrete. ACI 1R.544-96 (reapproved 2002). American Concrete Institute, Farmington Hills

  • Alwan JM, Naaman AE, Guerrero P (1999) Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concrete Sci Eng 1:15–25

    Google Scholar 

  • ANSYS (2009) Structural analysis guide—ANSYS user manual—release 12.0. Ansys, Inc., Canonsburg

  • Banthia N, Trottier JF (1991) Deformed steel fiber cementitious matrix bond under impact. Cem Concrete Res 21(1):158–168

    Article  CAS  Google Scholar 

  • Bhutta A, Farooq M, Borges P, Banthia N (2018) Influence of fiber inclination angle on bond-slip behavior of different alkali-activated composites under dynamic and quasi-static loadings. Cem Concrete Res 107:236–246

    Article  CAS  Google Scholar 

  • Bindiganavile V, Banthia N (2005) Impact response of the fiber–matrix bond in concrete. Can J Civil Eng 32(5):924–933

    Article  Google Scholar 

  • Blason S, Poveda E, Ruiz G, Cifuentes H, Fernandez Canteli A (2019) Twofold normalization of the cyclic creep curve of plain and steel-fiber reinforced concrete and its application to predict fatigue failure. Int J Fatigue 120:215–227

    Article  Google Scholar 

  • Cunha VM (2010) Steel fibre reinforced self-compacting concrete (from micro-mechanics to composite behaviour). PhD thesis. University of Minho

  • Cunha VMCF, Barros JAO, Sena-Cruz JM (2010) Pullout behaviour of steel fibres in self compacting concrete. ASCE J Mater Civil Construct 22:1–9

    Article  CAS  Google Scholar 

  • Gokoz UN, Naaman AE (1981) Effect of strain-rate on the pull-out behaviour of fibres in mortar. Int J Cem Composit Lightweight Concr 3(3):187–202

    Article  Google Scholar 

  • Hajsadeghi M, Chin C, Jones S (2018) Development of a generic three-dimensional finite element fibre pullout model. Constr Build Mater 185:354–368

    Article  Google Scholar 

  • Kim DJ, El-Tawil S, Naaman AE (2008) Loading rate effect on pullout behavior of deformed steel fibers. ACI Mater J 105(6):576–584

    Google Scholar 

  • Laranjeira F, Aguado A, Molins C (2010a) Predicting the pullout response of inclined straight steel fibers. Mater Struct 43:875–895

    Article  CAS  Google Scholar 

  • Laranjeira F, Molins C, Aguado A (2010b) Predicting the pullout response of inclined hooked steel fibers. Cem Concrete Res 40:1471–1487

    Article  CAS  Google Scholar 

  • Lee Y, Kang S, Kim J (2010) Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Constr Build Mater 24(10):2030–2041

    Article  Google Scholar 

  • Leung C, Shapiro N (1999) Optimal steel fiber strength for reinforcement of cementitious materials. J Mater Civil Eng 11:116–123

    Article  Google Scholar 

  • Leung C, Ybanez N (1997) Pullout of inclined flexible fiber in cementitious composite. J Eng Mech 123(3):239–246

    Article  Google Scholar 

  • Li V, Wang Y, Backer S (1990) Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites 21(2):132–140

    Article  CAS  Google Scholar 

  • Markovic I (2006) High-performance hybrid-fibre concrete: development and utilisation. PhD thesis, Delft University of Technology, Netherlands

  • Marone C (1998) The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Lett Nat 391:69–72

    Article  CAS  Google Scholar 

  • Naaman AE, Najm H (1991) Bond-slip mechanisms of steel fibers in concrete. ACI Mater J 88:135–145

    CAS  Google Scholar 

  • Nammur G, Naaman AE (1989) Bond stress model for fiber reinforced-concrete based on bond stress–slip relationship. ACI Mater J 86(1):45–57

    CAS  Google Scholar 

  • Nieuwoudt PD, Boshoff WP (2017) Time-dependent pull-out behaviour of hooked-end steel fibres in concrete. Cem Concrete Composit 79:133–147

    Article  CAS  Google Scholar 

  • Nonato Da Silva C, Ciambella J, Barros JAO, Costa I (2019) Analytical bond model for general type of reinforcements of finite embedment length in cracked cement based materials. Int J Solids Struct 167:36–47

    Article  Google Scholar 

  • Poveda E, Ruiz G, Cifuentes H, Yu R, Zhang XX (2017) Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC. Int J Fatigue 101:9–17

    Article  Google Scholar 

  • Rabbat B, Russell H (1985) Friction coefficient of steel on concrete or grout. J Struct Eng 111:505

    Article  Google Scholar 

  • Rice J, Lapuesta N, Ranjith K (2001) Rate and state dependent friction and the stability of sliding between elastically deformable solids. J Mech Phys Solids 49:1865–1898

    Article  Google Scholar 

  • Ruiz G (2001) Propagation of a cohesive crack crossing a reinforcement layer. Int J Fract 111:265–282

    Article  Google Scholar 

  • Ruiz G, Elices M, Planas J (1998) Size effect and bond–slip dependence of lightly reinforced concrete beams. Mater Struct 31(10):683–691

    Article  CAS  Google Scholar 

  • Ruiz G, Elices M, Planas J (1999) Minimum reinforcement in concrete members, ESIS IC9, vol 24. Elsevier, New York

    Google Scholar 

  • Ruiz G, de la Rosa A, Wolf S, Poveda E (2018) Model for the compressive stress-strain relationship of steel fiber-reinforced concrete for non-linear structural analysis. Hormigón Acero 69(S1):75–90

    Google Scholar 

  • Ruiz G, de la Rosa A, Poveda E (2019) Relationship between residual flexural strength and compression strength in steel-fiber reinforced concrete within the new eurocode 2 regulatory framework. Theor Appl Fract Mech 103:102310

    Article  Google Scholar 

  • Soufeiani L, Raman SN, Jumaat MB, Alengaram UJ, Ghadyani G, Mendis P (2016) Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading—a review. Eng Struct 124:405–417

    Article  Google Scholar 

  • Sujivorakul C, Waas AM, Naaman AE (2000) Pullout response of a smooth fiber with an end anchorage. J Eng Mech 126:986–993

    Article  Google Scholar 

  • Tai YS, El-Tawil S (2017) High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete. Constr Build Mater 148:204–218

    Article  CAS  Google Scholar 

  • Tarifa M, Poveda E, Cunha VMCF, Barros JAO (2019) Effect of the displacement rate and inclination angle in steel fiber pullout tests. Int J Fract. https://doi.org/10.1007/s10704-019-00398-2

    Article  Google Scholar 

  • Xu M, Hallinan B, Wille K (2016) Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cem Concrete Composit 70:98–109

    Article  CAS  Google Scholar 

  • Yu RC, Cifuentes H, Rivero I, Ruiz G, Zhang XX (2016) Dynamic fracture behaviour in fibre-reinforced cementitious composites. J Mech Phys Solids 93:135–152

    Article  CAS  Google Scholar 

  • Zhang H, Yu RC (2016) Inclined fiber pullout from a cementitious matrix: a numerical study. Materials 9:10

    Google Scholar 

  • Zhang J, Li V (2002) Effect of inclination angle on fiber rupture load in fiber reinforced cementitious composites. Composit Sci Technol 62:775–781

    Article  CAS  Google Scholar 

  • Zhang X, Ruiz G, Tarifa M, Cendón D, Gálvez F, Alhazmi W (2017) Dynamic fracture behavior of steel fiber reinforced self-compacting concretes (sfrsccs). Materials 10(11):e1270

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Ministerio de Ciencia, Innovación y Universidades, Spain, through the projects BIA2015-68678-C2-1-R and RTC-2017-6736-3, is acknowledged. Elisa Poveda appreciates the funding from the International Campus of Excellence CYTEMA, as well as, the University of Castilla-La Mancha, throughout Ayudas para estancias en universidades en el extranjero en 2019 en el ámbito del plan propio de investigación susceptibles de co-financiación por el Fondo FEDER, Programa 010100021 to fund her stay in the University of Minho during 2018 and 2019, respectively. Manuel Tarifa acknowledges the financial support from the Department of Applied Mechanics and Project Engineering, UCLM (2018), and from the Programa propio de I+D+i de la Universidad Politécnica de Madrid para realizar estancias de investigación internacional igual o superior a un mes (2019), with the same purpose. The last two authors acknowledge the support provided by the project ICoSyTec (POCI-01-0145-FEDER-027990) financed by FCT and co-funded by FEDER through the Operational Competitiveness and Internationalization Programme (POCI). The authors thank BEKAERT for the supply of fibres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Poveda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poveda, E., Yu, R.C., Tarifa, M. et al. Rate effect in inclined fibre pull-out for smooth and hooked-end fibres: a numerical study. Int J Fract 223, 135–149 (2020). https://doi.org/10.1007/s10704-019-00404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00404-7

Keywords

Navigation