Skip to main content

Advertisement

Log in

Effect of the displacement rate and inclination angle in steel fiber pullout tests

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper summarizes the results obtained in an experimental campaign on the effect of the displacement pullout rate and the inclination angle of the steel fiber pullout tests. For that purpose, specimens were obtained from a self-compacting concrete with a compressive strength of 86 MPa. In the experimental program, hooked-end steel fibers of 0.75 mm diameter and 60 mm length were used. Tests were executed with both hooked-end fibers, and smooth fibers obtained from the former by cutting the hooked end. For both type of fibers, their embedment length into concrete was 20 mm, and the influence of fiber inclination angle toward the load direction was investigated by adopting values of \(0^{\circ }\), \(30^{\circ }\) and \(60^{\circ }\). The tests were performed at displacement rates of 0.01, 0.1 and 1 mm/s. The results have shown that the peak pullout load increased with the inclination angle, in particular for the smooth series. Furthermore, higher displacement rates led to a higher energy absorption capacity for the pullout of the smooth fibers, while the energy absorption remained almost stable for hooked-end fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

The two first authors acknowledge the Financial support from Ministerio de Ciencia, Innovación y Universidades, Spain, through the project BIA2015-68678-C2-1-R. M. Tarifa appreciates the financial support from the Department of Applied Mechanics and Project Engineering, UCLM (2018), and from the Programa propio de I+D+i de la Universidad Politécnica de Madrid para realizar estancias de investigación internacional igual o superior a un mes (2019), to do two stays at the University of Minho, Guimarães, Portugal. E. Poveda acknowledges the funding from the International Campus of Excellence CYTEMA and the University of Castilla-La Mancha, throughout Ayudas para estancias en universidades y centros de investigación en el extranjero en 2019 en el ámbito del plan propio de investigación susceptibles de cofinanciación por el Fondo Europeo de Desarrollo Regional (FEDER), Programa 010100021 to fund her stays in the University of Minho during 2018 and 2019, respectively. The authors thank the support of the Department of Civil Engineering and the Laboratory of the Structural Division (LEST), University of Minho. The last two authors would also to acknowledge the support provided by the project ICoSyTec (POCI-01-0145-FEDER-027990) financed by FCT and co-funded by FEDER through the Operational Competitiveness and Internationalization Programme (POCI). We also appreciate the supply of fibers by the company Bekaert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Tarifa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarifa, M., Poveda, E., Cunha, V.M.C.F. et al. Effect of the displacement rate and inclination angle in steel fiber pullout tests. Int J Fract 223, 109–122 (2020). https://doi.org/10.1007/s10704-019-00398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00398-2

Keywords

Navigation