Skip to main content
Log in

Enhanced Absorptivity of Quantum Dot Infrared Photodetector by Introducing of Metal Nanostructure Layer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Quantum dot infrared photodetector (QDIP) shows more superior characteristics; however, the low absorption rate is still the fundamental factor restricting the performance of the detector. So in our paper, the QDIP is improved by introducing the metal structure with the strips and holes to increase absorptivity. The results demonstrate that the enhanced QDIP can greatly improve the photon absorptivity up to 98.92% as a result of the local coupling surface plasmon effect, which is 1.23 times than that of the conventional photodetectors without the metal array structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ryzhii V, Khmyrova I, Pipa V, Mitin V, Willander M (2001) Device model for quantum dot infrared photodetector and their dark-current characteristic. Semicond Sci Technol 16:331–338

    Article  CAS  Google Scholar 

  2. Martyniuk P, Rogalski A (2009) Insight into performance of quantum dot infrared photodetectors. Bull Pol Acad Sci Technol 57:103–116

    CAS  Google Scholar 

  3. Liu H, Zhang J, Gao Z, Shi Y (2015) Photodetection of infrared photodetector based on surrounding barriers formed by charged quantum dots. IEEE Photonics J 7:6801708

    Google Scholar 

  4. Martyniuk P, Rogalski A (2008) Quantum-dot infrared photodetectors: status and outlook. Prog Quantum Electron 32:89–120

    Article  Google Scholar 

  5. Ku Z, Jang W, Zhou J, Kim J, Barve AV, Silva S, Krishna S, Brueck SR, Nelson R, Urbas A (2013) Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors. Opt Express 21(4):4709–4716

    Article  CAS  Google Scholar 

  6. Gao L, Chen C, Zeng K, Cong G, Yang D, Song HS, Tang J (2016) Broadband, sensitive and spectrally distinctive SnS2 nanosheet/PbS colloidal quantum dot hybrid photodetector. Light-Sci Appl 5:e16126

    Article  CAS  Google Scholar 

  7. Huang L, Tu CC, Lin LY (2011) Colloidal quantum dot photodetectors enhanced by self-assembled plasmonic nanoparticles. Appl Phys Lett 98:113110

    Article  Google Scholar 

  8. Gu G, Mojaverian N, Vaillancourt J, Lu X (2014) Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement. J Phys D Appl Phys 47:435108

    Google Scholar 

  9. Chang CY, Chang HY, Chen CY, Tsai MW, Tang SF (2007) Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl Phys Lett 91(16):874–877

    Article  Google Scholar 

  10. Lee SC, Krishna S, Brueck SR (2009) Quantum dot infrared photodetector enhanced by surface plasmon wave excitation. Opt Express 17(25):23160–23168

    Article  CAS  Google Scholar 

  11. Chang C, Sharma YD, Kim Y, Bur JA, Shenoi RV, Krishna S, Huang D, Lin S (2010) A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett 10:1704–1709

    Article  CAS  Google Scholar 

  12. Liu H, Zhang J (2012) Performance investigations of quantum dots infrared photodetector. Infrared Phys Technol 55(4):320–325

    Article  Google Scholar 

  13. Chen M, Shao L, Kershaw SV, Yu H, Wang JF, Rogach AL, Zhao N (2014) Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 8(8):8208–8216

    Article  CAS  Google Scholar 

  14. Yifat Y, Ackerman M, Guyot-Sionnest P (2017) Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas. Appl Phys Lett 110:041106

    Article  Google Scholar 

  15. Soltanmoradi R, Wang Q, Qiu M, Andersson JY (2013) Transmission of infrared radiation through metallic photonic crystal structures. 5(5):4500608

  16. Huang Liang. Spectroscopic research of new infrared detection materials and devices based on In, As, Ga, Sb. Doctoral dissertation of university of Chinese academy of sciences.2014.05

  17. Palik ED (1985) Handbook of optical constants of solids. Academic Press

  18. Dayal G, Ramakrishna SA (2012) Design of highly absorbing metamaterials for infrared frequencies. Opt express 20(16):17503–17508

    Article  CAS  Google Scholar 

  19. Dayal G, Ramakrishna SA (2014) Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane. Opt Express 22(12):15104

    Article  Google Scholar 

  20. Wang J, Fan C, Ding P, He J, Cheng Y, Hu W, Cai G, Liang E, Xue Q (2012) Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt Express 20(14):14871

    Article  Google Scholar 

  21. Liu Z, Hao Z, Wang L et al (2015) Studies on absorption efficiency enhancement of quantum well infrared photodetector by using photonic crystal structures. J Optoelectron Laser 26(2):205–210

    CAS  Google Scholar 

  22. Zhang Y (1987) Semiconductor optoelectronics. Shanghai science and technology press, Shanghai

    Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 11874245 and 11875032), Applied Basic Research Project of Shanxi Province (Nos. 201701D221096, 201701D121038, 201801D121071, 201901D111316, 201901D211431), Universities Science and Technology innovation projects of Shanxi Province(No. 2019 L0746), Key R&D Project of Shanxi Province (No. 201803D121083), Science and Technology Innovation Group of Shanxi Province (No. 201805D131006),Shanxi Province Universities Science and Technology Achievements Transformation and Cultivation Project (No. 29), Applied Basic Research Project of Datong City (No. 2018152), and Datong City Key Industry Research Project (2019014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Liu or Guodong Wei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., JunJun, L., Lin, Q. et al. Enhanced Absorptivity of Quantum Dot Infrared Photodetector by Introducing of Metal Nanostructure Layer. Plasmonics 15, 1421–1427 (2020). https://doi.org/10.1007/s11468-020-01152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01152-4

Keywords

Navigation