Skip to main content
Log in

Short-lived and Nonphosphorescent Triplet state of Mexoryl SX, a UV-A Sunscreen

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Mexoryl SX (terephthalylidene-3,3′-dicamphor-10,10′-disulfonic acid, Ecamsule) is a water-soluble UV-A absorber. The near-IR phosphorescence spectrum of singlet oxygen generated by photosensitization with Mexoryl SX was not observed in air-saturated water. On the other hand, the time-resolved near-IR phosphorescence spectrum was observed in oxygen-saturated phosphate buffer (pH 7.4). The quantum yield of the singlet oxygen generation (ΦΔ) was determined to be 0.0021 ± 0.0005. The ability of Mexoryl SX as a photosensitizer is quite low. The question arises as to the quite low ΦΔ value. No phosphorescence was detectable from Mexoryl SX in ethanol at 77 K. We elucidated the nature of the lowest excited triplet (T1) state of Mexoryl SX using a time-resolved EPR technique, because this technique is powerful for the study of short-lived and nonphosphorescent T1 molecules. The strong time-resolved EPR signals were observed. This fact shows that a considerable proportion of the lowest excited singlet (S1) state molecules undergoes intersystem crossing (ISC) to the T1 state and the deactivation process of the T1 state is mainly radiationless. The observed zero-filed splitting parameters, T1 lifetime, and S1 → T1 ISC anisotropy suggest that the T1 state can be regarded as a 3*3ππ* mixing state in character and the two unpaired electrons in the T1 state do not localize on (4-methylbenzylidene)camphor, a closely related component. Although the shorter T1 lifetime (47 ns) prevents T1 state quenching by ground-state oxygen, the 3* character may contribute something to the low ΦΔ value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Bäumler, in Singlet Oxygen: Applications in Biosciences and Nanosciences, vol. 2, ed. by S. Nonell, C. Flors (The Royal Society of Chemistry, Cambridge, 2016), p. 205

    Chapter  Google Scholar 

  2. N.A. Shaath, in Sunscreens: Regulations and Commercial Development, ed. by N.A. Shaath (Taylor and Francis, Boca Raton, USA, 2005), p. 3

    Chapter  Google Scholar 

  3. B.P. Hibler, S.W. Dusza, S.Q. Wang, in Principles and Practice of Photoprotection, ed. by S.Q. Wang, H.W. Lim (Springer, Cham, 2016), p. 23

    Chapter  Google Scholar 

  4. S.A. Miller, S.L. Hamilton, U.G. Wester, W. Howard Cyr, Photochem. Photobiol. 68, 63 (1998)

    Article  Google Scholar 

  5. M. Shaban, F. Almutawa, in Principles and Practice of Photoprotection, ed. by S.Q. Wang, H.W. Lim (Springer, Cham, 2016), p. 429

    Chapter  Google Scholar 

  6. A. Fourtanier, D. Moyal, S. Seite, Photochem. Photobiol. Sci. 11, 81 (2012)

    Article  Google Scholar 

  7. C. Cole, in Principles and Practice of Photoprotection, ed. by S.Q. Wang, H.W. Lim (Springer, Cham, 2016), p. 275

    Chapter  Google Scholar 

  8. A. Deflandre, G. Lang, Int. J. Cosmet. Sci. 10, 53 (1988)

    Article  Google Scholar 

  9. A. Fourtanier, J. Labat-Robert, P. Kern, C. Berrebi, A.M. Gracia, B. Boyer, Photochem. Photobiol. 55, 549 (1992)

    Article  Google Scholar 

  10. S. Daly, H. Ouyang, P. Maitra, in Principles and Practice of Photoprotection, ed. by S.Q. Wang, H.W. Lim (Springer, Cham, 2016), p. 159

    Chapter  Google Scholar 

  11. A. Cantrell, D.J. McGarvey, L. Mulroy, T.G. Truscott, Photochem. Photobiol. 70, 292 (1999)

    Google Scholar 

  12. T. Tsuchiya, A. Kikuchi, N. Oguchi-Fujiyama, K. Miyazawa, M. Yagi, Photochem. Photobiol. Sci. 14, 807 (2015)

    Article  Google Scholar 

  13. A. Kikuchi, K. Shibata, R. Kumasaka, M. Yagi, J. Phys. Chem. A 117, 1413 (2013)

    Article  Google Scholar 

  14. A. Kikuchi, K. Shibata, R. Kumasaka, M. Yagi, Photochem. Photobiol. Sci. 12, 246 (2013)

    Article  Google Scholar 

  15. M. Montalti, A. Credi, L. Prodi, M.T. Gandolfi, Handbook of Photochemistry, 3rd edn. (Taylor and Francis, Boca Raton, 2006)

    Book  Google Scholar 

  16. R. Schmidt, J. Phys. Chem. 100, 8049 (1996)

    Article  Google Scholar 

  17. S. Nonell, C. Flors, in Singlet Oxygen: Applications in Biosciences and Nanosciences, vol. 2, ed. by S. Nonell, C. Flors (The Royal Society of Chemistry, Cambridge, 2016), p. 7

    Chapter  Google Scholar 

  18. A.A. Krasnovsky Jr., J. Photochem. Photobiol. A 196, 210 (2008)

    Article  Google Scholar 

  19. J. Baier, T. Fuß, C. Pöllmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, W. Bäumler, J. Photochem. Photobiol. B 87, 163 (2007)

    Article  Google Scholar 

  20. R. Shimizu, M. Yagi, A. Kikuchi, J. Photochem. Photobiol. B 191, 116 (2019)

    Article  Google Scholar 

  21. S. Fukuchi, M. Yagi, N. Oguchi-Fujiyama, J. Kang, A. Kikuchi, Photochem. Photobiol. Sci. 18, 1556 (2019)

    Article  Google Scholar 

  22. D.G. Fresnadillo, S. Lacombe, in Singlet Oxygen: Applications in Biosciences and Nanosciences, vol. 1, ed. by S. Nonell, C. Flors (The Royal Society of Chemistry, Cambridge, 2016), p. 105

    Chapter  Google Scholar 

  23. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, J. Photochem. Photobiol. A 79, 11 (1994)

    Article  Google Scholar 

  24. N. Hirota, S. Yamauchi, J. Photochem. Photobiol. C 4, 109 (2003)

    Article  Google Scholar 

  25. P. Kottis, R. Lefebvre, J. Chem. Phys. 39, 393 (1963)

    Article  ADS  Google Scholar 

  26. J. Tanaka, Bull. Chem. Soc. Jpn. 36, 833 (1963)

    Article  Google Scholar 

  27. M. Kinoshita, N. Iwasaki, N. Nishi, Appl. Spectrosc. Rev. 17, 1 (1981)

    Article  ADS  Google Scholar 

  28. P. Kottis, R. Lefebvre, J. Chem. Phys. 41, 379 (1964)

    Article  ADS  Google Scholar 

  29. M.S. De Groot, J.H. van der Waals, Physica 29, 1128 (1963)

    Article  ADS  Google Scholar 

  30. R. Furrer, F. Fujara, C. Lange, D. Stehlik, H.M. Vieth, W. Vollmann, Chem. Phys. Lett. 75, 332 (1980)

    Article  ADS  Google Scholar 

  31. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance (Harper and Row, London, 1967)

    Google Scholar 

  32. N. Hirota, S. Yamauchi, M. Terazima, Rev. Chem. Intermed. 8, 189 (1987)

    Article  Google Scholar 

  33. D.A. Antheunis, B.J. Botter, J. Scmidt, J.H. van der Waals, Mol. Phys. 29, 49 (1975)

    Article  ADS  Google Scholar 

  34. E.T. Harrigan, N. Hirota, Mol. Phys. 31, 663 (1976)

    Article  ADS  Google Scholar 

  35. F. Wilkinson, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 22, 113 (1993)

    Article  ADS  Google Scholar 

  36. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, 2010)

    Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the Instrumental Analysis Center, Yokohama National University, for the use of the EPR spectrometer (JEOL-JES-FA200). This work was supported by JSPS KAKENHI Grant Numbers 24655060 and 19K05877.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikio Yagi or Azusa Kikuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamoto, Y., Shimizu, R., Yagi, M. et al. Short-lived and Nonphosphorescent Triplet state of Mexoryl SX, a UV-A Sunscreen. Appl Magn Reson 51, 567–580 (2020). https://doi.org/10.1007/s00723-020-01198-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01198-x

Navigation