Skip to main content
Log in

Compatibilization and toughness modification of linear aliphatic epoxy compound on paving epoxy asphalt

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Epoxy asphalt (EA), which is usually prepared by diglycidyl ether of bisphenol A (DGEBA), curing agent and asphalt, is a kind of high-performance pavement material in highway construction. However, because of rigid molecular structure of DGEBA, poor compatibility with asphalt and high cross-linking density of three-dimensional network, cured EA usually has high strength but poor toughness especially at low temperature. In order to solve the problem of insufficient toughness of EA below glass-transition temperature (Tg) and eliminate the potential brittle fracture of EA mixture, linear aliphatic epoxy compounds, which have low viscosity, good molecular flexibility, similar solubility parameter and polarity with asphalt or DGEBA resin, can be used as phase structure controller and toughner to modify EA. By introducing a little of linear aliphatic epoxy compound, such as 1, 4-butanediol diglycidyl ether (BDDGE) or 1, 6-hexanediol diglycidyl ether (HDDGE), not only the viscosity of EA could be significantly decreased during the curing process, but also the phase compatibility of EA could be improved. An obvious reduction in storage modulus (E′) at low temperature and decreased Tg also prove that BDDGE or HDDGE modified EA have better toughness than neat EA at low temperature. The optimum amount of linear aliphatic epoxy compound based on its mixture with DGEBA should be 10–15 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cong P, Chen S, Yu J (2011) Investigation of the properties of epoxy resin-modified asphalt mixtures for application to orthotropic bridge decks. J Appl Polym Sci 121(4):2310–2316. https://doi.org/10.1002/app.33948

    Article  Google Scholar 

  2. Chen L, Qian Z, Hu H (2013) Epoxy asphalt concrete protective course used on steel railway bridge. Constr Build Mater 41:125–130. https://doi.org/10.1016/j.conbuildmat.2012.12.002

    Article  Google Scholar 

  3. Cong P, Yu J, Chen S (2010) Effects of epoxy resin contents on the rheological properties of epoxy-asphalt blends. J Appl Polym Sci 118(6):3678–3684. https://doi.org/10.1002/app.32440

    Article  Google Scholar 

  4. Yin H, Jin H, Wang C, Sun Y, Yuan Z, Xie H, Wang Z, Cheng R (2013) Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim 115(2):1073–1080. https://doi.org/10.1007/s10973-013-3449-9

    Article  Google Scholar 

  5. Qian Z, Chen L, Jiang C, Luo S (2011) Performance evaluation of a lightweight epoxy asphalt mixture for bascule bridge pavements. Constr Build Mater 25(7):3117–3122. https://doi.org/10.1016/j.conbuildmat.2010.12.030

    Article  Google Scholar 

  6. Xu P, Zhu X, Cong P, Du X, Zhang R (2018) Modification of alkyl group terminated hyperbranched polyester on paving epoxy asphalt. Constr Build Mater 165:295–302. https://doi.org/10.1016/j.conbuildmat.2017.12.182

    Article  Google Scholar 

  7. Li D, Greenfield M (2014) Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 115:347–356. https://doi.org/10.1016/j.fuel.2013.07.012

    Article  Google Scholar 

  8. Yu J, Cong P, Wu S (2009) Laboratory investigation of the properties of asphalt modified with epoxy resin. J Appl Polym Sci 113(6):3557–3563. https://doi.org/10.1002/app.30324

    Article  Google Scholar 

  9. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145(1–2):42–82. https://doi.org/10.1016/j.cis.2008.08.011

    Article  Google Scholar 

  10. Yildirim Y (2007) Polymer modified asphalt binders. Constr Build Mater 21(1):66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007

    Article  MathSciNet  Google Scholar 

  11. Polacco G, Berlincioni S, Biondi D, Stastna J, Zanzotto L (2005) Asphalt modification with different polyethylene-based polymers. Eur Polym J 41(12):2831–2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034

    Article  Google Scholar 

  12. Yahyaie H, Ebrahimi M, Tahami HV, Mafi ER (2013) Toughening mechanisms of rubber modified thin film epoxy resins. Prog Organ Coat 76(1):286–292. https://doi.org/10.1016/j.porgcoat.2012.09.016

    Article  Google Scholar 

  13. Li Y, Zhang P, Lv R, Xu Y, Hou G (2011) Performance evaluation of epoxy asphalt and study of epoxy asphalt used on deck surfacing of concrete bridge. Appl Mech Mater 142:157–160. https://doi.org/10.4028/www.scientific.net/AMM.142.157

    Article  Google Scholar 

  14. Zhou X, Wu S, Liu Q, Chen Z, Yi M (2015) Effect of surface active agents on the rheological properties and solubility of layered double hydroxides-modified asphalt. Mater Res Innov 19(sup5):S5-978–S5-982. https://doi.org/10.1179/1432891714z.0000000001233

    Article  Google Scholar 

  15. Araki W, Wada S, Adachi T (2008) Viscoelasticity of epoxy resin/silica hybrid materials with an acid anhydride curing agent. J Appl Polym Sci 108(4):2421–2427. https://doi.org/10.1002/app.27887

    Article  Google Scholar 

  16. Hansen CM (2000) Hansen solubility parameters. CRC Press, Boca Raton

    Google Scholar 

  17. Çubuk M, Gürü M, Çubuk MK (2009) Improvement of bitumen performance with epoxy resin. Fuel 88(7):1324–1328. https://doi.org/10.1016/j.fuel.2008.12.024

    Article  Google Scholar 

  18. Sahoo SK, Khandelwal V, Manik G (2018) Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym Adv Technol 29(1):565–574. https://doi.org/10.1002/pat.4166

    Article  Google Scholar 

  19. Geier J, Lessmann H, Hillen U, Skudlik C, Jappe U (2016) Sensitization to reactive diluents and hardeners in epoxy resin systems. IVDK data 2002–2011. Part II: concomitant reactions. Contact Dermat 74(2):94–101. https://doi.org/10.1111/cod.12490

    Article  Google Scholar 

  20. Paluvai NR, Mohanty S, Nayak SK (2014) Synthesis and modifications of epoxy resins and their composites: a review. Polym Plast Technol Eng 53(16):1723–1758. https://doi.org/10.1080/03602559.2014.919658

    Article  Google Scholar 

  21. Sharifi M, Jang CW, Abrams CF, Palmese GR (2014) Toughened epoxy polymers via rearrangement of network topology. J Mater Chem A 2(38):16071–16082. https://doi.org/10.1039/c4ta03051f

    Article  Google Scholar 

  22. Wang H, Zhang Y, Zhu L, Zhang B, Zhang Y (2010) Synthesis and curing behavior of a novel liquid crystalline epoxy resin. J Therm Anal Calorim 103(3):1031–1037. https://doi.org/10.1007/s10973-010-1086-0

    Article  Google Scholar 

  23. Ozeren Ozgul E, Ozkul MH (2018) Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures. Constr Build Mater 158:369–377. https://doi.org/10.1016/j.conbuildmat.2017.10.008

    Article  Google Scholar 

  24. Tan SG, Chow WS (2010) Thermal properties, fracture toughness and water absorption of epoxy-palm oil blends. Polym Plast Technol Eng 49(9):900–907. https://doi.org/10.1080/03602551003682042

    Article  Google Scholar 

  25. Zhou W, Xia Y, Tsai F, Jiang T, Zhao H, Wen J (2016) Effects of compound curing agent on the thermo-mechanical properties and structure of epoxy asphalt. Int J Pavement Eng 18(10):928–936. https://doi.org/10.1080/10298436.2016.1138109

    Article  Google Scholar 

  26. Li C, Liu M, Liu Z, Qing M, Wang G (2013) DSC and curing kinetics of epoxy resin using cyclohexanediol diglycidyl ether as active diluents. J Therm Anal Calorim 116(1):411–416. https://doi.org/10.1007/s10973-013-3471-y

    Article  Google Scholar 

  27. Villanueva M, Fraga I, Rodríguez-Añón JA, Proupín-Castiñeiras J (2009) Study of the influence of a reactive diluent on the rheological properties of an epoxy-diamine system. J Therm Anal Calorim 98(2):521–525. https://doi.org/10.1007/s10973-009-0303-1

    Article  Google Scholar 

  28. Kregl L, Wallner GM, Lang RW, Mayrhofer G (2017) Effect of resin modifiers on the structural properties of epoxy resins. J Appl Polym Sci. https://doi.org/10.1002/app.45348

    Article  Google Scholar 

  29. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2018) Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind Eng Chem Res 57(8):2711–2726. https://doi.org/10.1021/acs.iecr.7b04495

    Article  Google Scholar 

  30. Cong P, Tian Y, Liu N, Xu P (2016) Investigation of epoxy-resin-modified asphalt binder. J Appl Polym Sci 133(21):1–8. https://doi.org/10.1002/app.43401

    Article  Google Scholar 

  31. Cong P, Luo W, Xu P (2015) Investigation on recycling of SBS modified asphalt binders containing fresh asphalt and rejuvenating agents. Constr Build Mater 91:225–231. https://doi.org/10.1016/j.conbuildmat.2015.05.041

    Article  Google Scholar 

  32. Yin H, Zhang Y, Sun Y (2015) Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct 48(11):3825–3835. https://doi.org/10.1617/s11527-014-0442-0

    Article  Google Scholar 

  33. Ding Q, Shen F, Sun Z (2011) A laboratory investigation into the composite bonding system of cement-emulsified asphalt-epoxy resin. Appl Mech Mater 80–81:379–384. https://doi.org/10.4028/www.scientific.net/AMM.80-81.379

    Article  Google Scholar 

  34. Wu S (1978) Interfacial energy, structure, and adhesion between polymers. Polym Blends. https://doi.org/10.1016/B978-0-12-546801-5.50012-8

    Article  Google Scholar 

  35. Kang Y, Jin R, Wu Q, Pu L, Song M, Cheng J, Yu P (2016) Anhydrides-cured bimodal rubber-like epoxy asphalt composites: from thermosetting to quasi-thermosetting. Polymers. https://doi.org/10.3390/polym8040104

    Article  Google Scholar 

  36. Kang Y, Song M, Pu L, Liu T (2015) Rheological behaviors of epoxy asphalt binder in comparison of base asphalt binder and SBS modified asphalt binder. Constr Build Mater 76:343–350. https://doi.org/10.1016/j.conbuildmat.2014.12.020

    Article  Google Scholar 

  37. Stastna J, Zanzotto L, Vacin OJ (2003) Viscosity function in polymer-modified asphalts. J Colloid Interface Sci 259(1):200–207. https://doi.org/10.1016/s0021-9797(02)00197-2

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant Numbers 51978072, 51978070), Fundamental Research Funds for the Central Universities, CHD (Grant Number: 300102319207) and China Postdoctoral Science Foundation (Grant Number: 2018M643552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Xu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Xu, P., Cong, P. et al. Compatibilization and toughness modification of linear aliphatic epoxy compound on paving epoxy asphalt. Mater Struct 53, 42 (2020). https://doi.org/10.1617/s11527-020-01473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-020-01473-0

Keywords

Navigation