Skip to main content
Log in

Observations of FeO Reduction in Electric Arc Furnace Slag by Aluminum Black Dross: Effect of CaO Fluxing on Slag Morphology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of CaO fluxing on slag morphology was investigated during the reduction of FeO in electric arc furnace slag by aluminum black dross (ABD). Macro- and microscopic observations, by evaluating entrapped gas bubbles and reduced iron droplets related to gas evolution, apparent slag morphologies, and vertical section of slag at different initial CaO contents and reaction times, confirmed that both aluminothermic (dominant reaction) and carbothermic (minor) reduction occurred. Thus, the production of CO(+CO2) gas caused swelling-shrinking phenomena with repeated expansion and collapse of the slag pellet. In addition, macroscopic observation of slag morphologies as a function of the initial CaO content is well associated with quantitative consideration of the apparent viscosity as well as spinel ([Mg,Fe]Al2O4) activity. Consequently, appropriate CaO fluxing is necessary to control the composition of highly fluid slag by changing the slag from a high-alumina system to calcium–aluminosilicate melts when utilizing ABD as a reducing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.Y. Hwang, X. Huang and Z. Xu: J. Min. Mater. Charact. Eng., 2006, vol. 5, pp. 47-62.

    Google Scholar 

  2. P.E. Tsakiridis, P. Oustadakis and S. Agatzini-Leonardou: J. Environ. Chem. Eng., 2013, vol. 1, pp. 23-32.

    Article  CAS  Google Scholar 

  3. European Waste Catalogue and Hazardous Waste List, Environmental Protection Agency, Ireland, 2002. ISBN: 1-84095-083-8.

  4. F.A. López, E. Sáinz, A. Formoso and I. Alfaro: Can. Metall. Q., 1994, vol. 33, pp. 29-33.

    Article  Google Scholar 

  5. O. Manfredi, W. Wuth and I. Bohlinger: JOM, 1997, vol. 49, pp. 48-51.

    Article  CAS  Google Scholar 

  6. E. David and J. Kopac: J. Hazard. Mater., 2013, vol. 261, pp. 316-24.

    Article  CAS  Google Scholar 

  7. T. Hashishin, Y. Kodera, T. Yamamoto, M. Ohyanagi and Z.A. Munir: J. Am. Ceram. Soc., 2004, vol. 87, pp. 496-99.

    Article  CAS  Google Scholar 

  8. M.C. Shinzato and R. Hypolito: Waste Manag., 2005, vol. 25, pp. 37-46.

    Article  CAS  Google Scholar 

  9. B.R. Das, B. Dash, B.C. Tripathy, I.N. Bhattacharya and S.C. Das: Min. Eng., 2007, vol. 20, pp. 252-58.

    Article  CAS  Google Scholar 

  10. A. Li, H. Zhang and H. Yang: Ceram. Int., 2014, vol. 40, pp. 12585-90.

    Article  CAS  Google Scholar 

  11. J.H. Heo, E.H. Jeong, C.W. Nam, K.H. Park and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 939-43.

    Article  Google Scholar 

  12. E. David and J. Kopac: J. Hazard. Mater., 2012, vol. 209-210, pp. 501-09.

    Article  Google Scholar 

  13. H. Shen and E. Forssberg: Waste Manag., 2003, vol. 23, pp. 933-49.

    Article  CAS  Google Scholar 

  14. H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. de Camargo, J.C.S. Portela and N.E. Narita: Ceram. Int., 2008, vol. 34, pp. 581-91.

    Article  CAS  Google Scholar 

  15. E.M.M. Ewais, N.M. Khalil, M.S. Amin, Y.M.Z. Ahmed and M.A. Barakat: Ceram. Int., 2009, vol. 35, pp. 3381-88.

    Article  CAS  Google Scholar 

  16. G. Bernardo, M. Marroccoli, M. Nobili, A. Telesca and G.L. Valenti (2007) Resour., Conserv. Recyc. vol. 52, pp. 95-102.

    Article  Google Scholar 

  17. L. Muhmood, S. Vitta and D. Venkateswaran: Cement. Conc. Res., 2009, vol. 39, pp. 102-09.

    Article  CAS  Google Scholar 

  18. H.S. Kim, K.S. Kim, S.S. Jung, J.I. Hwang, J.S. Choi and I. Sohn: Waste Manag., 2015, vol. 41, pp. 85-93.

    Article  CAS  Google Scholar 

  19. K. Mah, J.M. Toguri and H.W. Smith: Conserv. Recyc., 1986, vol. 9, pp. 325-34.

    Article  CAS  Google Scholar 

  20. H. Soto and J.M. Toguri: Conserv. Recyc., 1986, vol. 9, pp. 45-54.

    Article  CAS  Google Scholar 

  21. M. Ueda, M. Amemiya, T. Ishikawa and T. Ohtsuka: J. Japan. Inst. Met., 1999, vol. 63, pp. 279-83.

    Article  CAS  Google Scholar 

  22. A. Takeuchi, H. Hashimoto, K. Tanaka, N. Tanahashi and K. Nakata: J. Japan. Inst. Light Met. 1996, vol. 46, pp. 592-96.

    Article  CAS  Google Scholar 

  23. J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 219-28.

    Article  CAS  Google Scholar 

  24. J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 229-38.

    Article  CAS  Google Scholar 

  25. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980, pp. 1–24.

    Google Scholar 

  26. J.Y. Choi and H.G. Lee: ISIJ Int., 2002, vol. 42, pp. 221-28.

    Article  CAS  Google Scholar 

  27. S. Kongkarat, R. Khanna, P. Koshy, P. Okane and V. Sahajwalla (2012) ISIJ Int. vol. 52, pp. 385-93.

    Article  CAS  Google Scholar 

  28. U. Kumar, S. Maroufi, R. Rajaro, M. Mayyas, I. Masuri, R.K. Joshi and V. Sahajwalla: J. Clean. Prod. 2017, vol. 158, pp. 218-24.

    Article  CAS  Google Scholar 

  29. J.R. Dankwah, P. Koshy, N.M. Saha-Chaudhury, P. O’Kane, C. Skidmore, D. Knights and V. Sahajwalla: ISIJ Int. 2011, vol. 51, pp. 498-07.

    Article  CAS  Google Scholar 

  30. S. Maroufi, M. Mayyas, I. Mansuri, P. O’Kane, C. Skidemore, Z. Jin, A. Fontana and V. Sahajwalla: Metall. Mater. Trans. B. 2017, vol. 48, pp. 2316-23

    Article  Google Scholar 

  31. S.L. Teasdale and P.C. Hayes: ISIJ Int., 2005, vol. 45, pp. 634-41.

    Article  CAS  Google Scholar 

  32. R. Roscoe: Br. J. Appl. Phys., 1952, vol. 3, pp. 267-69.

    Article  Google Scholar 

  33. S. Wright, L. Zhang, S. Sun and S. Jahanshahi: Metall. Mater. Trans. B, 2000, vol. 31, pp. 97-104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express many thanks to the UNSW Study Abroad Research Practicum Program for JUNG HO HEO’s study at the Centre for SMaRT, UNSW. Also, this work was partly supported by the Korea Evaluation Institute of Industrial Technology (KEIT, with Grant No. 10063056) and Korea Institute of Energy Technology Evaluation and Planning (KETEP, with Grant No. 20172010106310), funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J.H., Kim, T.S., Sahajwalla, V. et al. Observations of FeO Reduction in Electric Arc Furnace Slag by Aluminum Black Dross: Effect of CaO Fluxing on Slag Morphology. Metall Mater Trans B 51, 1201–1210 (2020). https://doi.org/10.1007/s11663-020-01840-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01840-w

Navigation