Skip to main content
Log in

Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic electron-transport materials are an essential component to boost performances and stability of organic light-emitting diodes. We present a robust organic electron-transport compound 3-(6-(3-(4,6-bis(4-biphenylyl)-l,3,5-triazin-2-yl)phenyl)pyridin-2-yl)phenyldiphenylphosphine oxide by facilely coupling the triphenylphosphine oxide moiety to the 2-phenyl-4,6-bis(4-biphenylyl)-1,3,5-triazine unit via a 2,6-pyridinylene linker. It is well soluble in weakly polar solvents and possesses a high Tg of 123 °C with an exceptional Td≈470 °C at 1% weight loss and deep HOMO/LUMO levels of ca. −6.45/-3.06 eV. The phos-phorescent spectrum measured in solid state at 77 K reveals a notable triplet energy of 2.88 eV. n-Doping with 8-hydroxyquinolatolithium (Liq) produces the electron mobility value of 4.66×10−5-3.21×10−4 cm V−1s−1 @(2–5)×10−5 V cm−1. Moreover, the contrasting solubility of the bromo reaction intermediate and the new compound in alcoholic solvents facilitates separation. The characterizations of bottom- and top-emission green phosphorescent OLEDs involving this single Liq-doped electron-transport layer reveal long stability. In particular, the latter provides outstanding performances with 77.4 cd A−1 (corresponding to an EQE of 18.7%) and 86.8 lm W−1@ca. 1000 cd m−2, based on the green emitter bis(2-phenylpyridine)(2-(4-methyl-3-phenylphenyl)pyridine)iridium(III). Moreover, driven by a constant current for ca. 640 h, the initial luminance of 1000 cd m−2 appears almost no decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang CW, VanSlyke SA. Appl Phys Lett, 1987, 51: 913–915

    Article  CAS  Google Scholar 

  2. Kido J, Hongawa K, Okuyama K, Nagai K. Appl Phys Lett, 1994, 64: 815–817

    Article  CAS  Google Scholar 

  3. Kido J, Hayase H, Hongawa K, Nagai K, Okuyama K. Appl Phys Lett, 1994, 65: 2124–2126

    Article  CAS  Google Scholar 

  4. Lamansky S, Kwong RC, Nugent M, Djurovich PI, Thompson ME. Org Electron, 2001, 2: 53–62

    Article  CAS  Google Scholar 

  5. Jin G, Liu JZ, Zou JH, Huang XL, He MJ, Peng L, Chen LL, Zhu XH, Peng J, Cao Y. Sci Bull, 2018, 63: 446–451

    Article  CAS  Google Scholar 

  6. Tanaka M, Noda H, Nakanotani H, Adachi C. Adv Electron Mater, 2019, 5: 1800708

    Article  Google Scholar 

  7. Meerheim R, Scholz S, Schwartz G, Reineke S, Olthof S, Walzer K, Leo K. Proc SPIE, 2008, 6999: 699917

    Article  Google Scholar 

  8. Tan WY, Zou JH, Gao DY, Liu JZ, Chen NN, Zhu XH, Peng J, Cao Y. Adv Electron Mater, 2016, 2: 1600101

    Article  Google Scholar 

  9. Wei XF, Tan WY, Zou JH, Guo QX, Gao DY, Ma DG, Peng J, Cao Y, Zhu XH. J Mater Chem C, 2017, 5: 2329–2336

    Article  CAS  Google Scholar 

  10. Fleissner A, Stegmaier K, Melzer C, von Seggern H, Schwalm T, Rehahn M. Chem Mater, 2009, 21: 4288 1298

    Article  CAS  Google Scholar 

  11. Becker H, Bach I, Holbach M, Schwaiger J, Spreitzer H. SID Symposium Digest, 2010, 41: 39–42

    Article  CAS  Google Scholar 

  12. Fujimoto H, Yahiro M, Yukiwaki S, Kusuhara K, Nakamura N, Suekane T, Wei H, Imanishi K, Inada K, Adachi C. Appl Phys Lett, 2016, 109: 243302

    Article  Google Scholar 

  13. Von Ruden AL, Cosimbescu L, Polikarpov E, Koech PK, Swensen JS, Wang L, Darsell JT, Padmaperuma AB. ChemMater, 2010, 22: 5678–5686

    Google Scholar 

  14. Tan WY, Wang R, Li M, Liu G, Chen P, Li XC, Lu SM, Zhu HL, Peng QM, Zhu XH, Chen W, Choy WCH, Li F, Peng J, Cao Y. Adv Fund Mater, 2014, 24: 6540–6547

    Article  CAS  Google Scholar 

  15. Yin X, Zhang T, Peng Q, Zhou T, Zeng W, Zhu Z, Xie G, Li F, Ma D, Yang C. J Mater Chem C, 2015, 3: 7589–7596

    Article  CAS  Google Scholar 

  16. Chakravarthi N, Gunasekar K, Cho W, Long DX, Kim YH, Song CE, Lee JC, Facchetti A, Song M, Noh YY, Jin SH. Energy Environ Sci, 2016, 9: 2595–2602

    Article  CAS  Google Scholar 

  17. Naik S, Kumaravel M, Mague JT, Balakrishna MS. Inorg Chem, 2014, 53: 1370–1381

    Article  CAS  Google Scholar 

  18. Hung WY, Fang GC, Lin SW, Cheng SH, Wong KT, Kuo TY, Chou PT. Sci Rep, 2014, 4: 5161

    Article  CAS  Google Scholar 

  19. Jia J, Zhu L, Wei Y, Wu Z, Xu H, Ding D, Chen R, Ma D, Huang W. J Mater Chem C, 2015, 3: 4890–4902

    Article  CAS  Google Scholar 

  20. Zhang H, Tan WY, Fladischer S, Ke L, Ameri T, Li N, Turbiez M, Spiecker E, Zhu XH, Cao Y, Brabec CJ. J Mater Chem A, 2016, 4: 5032–5038

    Article  CAS  Google Scholar 

  21. Wang K, Neophytou M, Aydin E, Wang M, Laurent T, Harrison GT, Liu J, Liu W, De Bastiani M, Khan JI, Anthopoulos TD, Laquai F, De Wolf S. Adv Mater Interfaces, 2019, 6: 1900434

    Article  Google Scholar 

  22. Seitkhan A, Neophytou M, Kirkus M, Abou-Hamad E, Hedhili MN, Yengel E, Firdaus Y, Faber H, Lin Y, Tsetseris L, McCulloch I, Anthopoulos TD. Adv Funct Mater, 2019, 29: 1905810

    Article  CAS  Google Scholar 

  23. Chen NN, Tan WY, Liu JZ, Zhou JH, Gao DY, Chen LL, Peng JB, Cao Y, Zhu XH. Org Electron, 2017, 48: 271–275

    Article  CAS  Google Scholar 

  24. Fink R, Frenz C, Thelakkat M, Schmidt HW. Macromolecules, 1997, 30: 8177–8181

    Article  CAS  Google Scholar 

  25. Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem Rev, 2019, 119: 8291–8331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0400701), Natural Science Foundation of Guangdong Joint Program (U1801258, U1301243), and Department of Science and Technology of Guangdong Province (2019B010924003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Hui Zhu or Jian-Hua Zou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9714_MOESM1_ESM.pdf

Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LL., Peng, L., Wang, LY. et al. Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability. Sci. China Chem. 63, 904–910 (2020). https://doi.org/10.1007/s11426-020-9714-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9714-0

Keywords

Navigation