Skip to main content
Log in

Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Nanostructured ZnFe2O4 was synthesized by the heat treatment of a mechanically activated mixture of ZnO/α-Fe2O3. X-ray diffraction (XRD) and differential thermal analysis (DTA) results demonstrated that, after 5 h of the mechanical activation of the mixture, ZnFe2O4 was formed by heat treatment at 750°C for 2 h. To improve the characteristics of ZnFe2O4 for adsorption applications, the chemical activation process was performed. The 2 h chemical activation with 1 mol·L-1 HNO3 and co-precipitation of 52%-57% dissolved ZnFe2O4 led to an increase in the saturated magnetization from 2.0 to 7.5 emu·g-1 and in the specific surface area from 5 to 198 m2·g-1. In addition, the observed particle size reduction of chemically activated ZnFe2O4 in field emission scanning electron microscopy (FESEM) micrographs was in agreement with the specific surface area increase. These improvements in ZnFe2O4 characteristics considerably affected the adsorption performance of this adsorbent. Adsorption results revealed that mechano-thermally synthesized ZnFe2O4 had the maximum arsenic adsorption of 38% with the adsorption capacity of 0.995 mg·g-1 in a 130 mg·L-1 solution of As(V) after 30 min of agitation. However, chemically activated ZnFe2O4 showed the maximum arsenic adsorption of approximately 99% with the adsorption capacity of 21.460 mg·g-1 under the same conditions. These results showed that the weak adsorption performance of mechano-thermally synthesized ZnFe2O4 was improved by the chemical activation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.K. Karakaş, R. Boncukcuoğlu, and I.H. Karakaş, Adsorptive properties of As(III) from aqueous solution using magnetic nickel ferrite (NiFe2O4) nanoparticles: Isotherm and kinetic studies, Sep. Sci. Technol, 52(2017), No. 1, p. 21.

    Article  CAS  Google Scholar 

  2. K.S.M. Abdul, S.S. Jayasinghe, E.P.S. Chandana, C. Jayasumana, and P.M.C.S. De Silva, Arsenic and human health effects: A review, Environ. Toxicol. Pharmacol, 40(2015), No. 3, p. 828.

    Article  CAS  Google Scholar 

  3. A.E. Burakov, E.V Galunin, Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, and V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf., 148(2018), p. 702.

    Article  CAS  Google Scholar 

  4. J. Gómez-Pastora, E. Bringas, and I. Ortiz, Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications, Chem. Eng. J., 256(2014), p. 187.

    Article  CAS  Google Scholar 

  5. Y.J. Tu, T.S. Chan, H.W. Tu, S.L. Wang, C.F. You, and C.K. Chang, Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 anoparticles, Chemosphere, 148(2016), p. 452.

    Article  CAS  Google Scholar 

  6. J.G. Parsons, M.L. Lopez, J.R. Peralta-Videa, and J.L. Gardea-Torresdey, Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents, Microchem. J., 91(2009), No. 1, p. 100.

    Article  CAS  Google Scholar 

  7. S. Martinez-Vargas, A.I. Martínez, E.E. Hernández-Beteta, O.F. Mijangos-Ricardez, V. Vázquez-Hipólito, C. Patiño-Carachure, and J. López-Luna, As(III) and As(V) adsorption on manganese ferrite nanoparticles, J. Mol. Struct, 1154(2018), p. 524.

    Article  CAS  Google Scholar 

  8. S. Martinez-Vargas, A.I. Martínez, E.E. Hernández-Beteta, O.F. Mjangos-Ricardez, V. Vázquez-Hipólito, C. Patiño-Carachure, H. Hernandez-Flores, and J. López-Luna, Arsenic adsorption on cobalt and manganese ferrite nanoparticles, J. Mater. Sci, 52(2017), p. 6205.

    Article  CAS  Google Scholar 

  9. P. Druska, U. Steinike, and V. Šepelák, Surface structure of mechanically activated and of mechanosynthesized zinc ferrite, J. Solid State Chem., 146(1999), No. 1, p. 13.

    Article  CAS  Google Scholar 

  10. J. Hu, I.M.C. Lo, and G.H. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal, Sep. Purif. Technol, 56(2007), No. 3, p. 249.

    Article  CAS  Google Scholar 

  11. J.N. Dui, G.Y. Zhu, and S.M. Zhou, Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI), ACS Appl. Mater. Interfaces, 5(2013), No. 20, p. 10081.

    Article  CAS  Google Scholar 

  12. M.P. Reddy, A.M.A. Mohamed, X.B. Zhou, S. Du, and Q. Huang, A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres, J. Magn. Magn. Mater, 388(2015), p. 40.

    Article  CAS  Google Scholar 

  13. C.G. Anchieta, E.C. Severo, C. Rigo, M.A. Mazutti, R.C. Kuhn, E.I. Muller, E.M.M. Flores, R.F.P.M. Moreira, and E.L. Foletto, Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction, Mater Chem. Phys., 160(2015), p. 141.

    Article  CAS  Google Scholar 

  14. M. Hosseinzadeh, S.A.S. Ebrahimi, S. Raygan, and S.M. Masoudpanah, Removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite through mechanochemical activation, J. Ultrafine Grained Nanostruct. Mater, 49(2016), No. 2, p. 72.

    CAS  Google Scholar 

  15. S. Rajput, C.U. Pittman Jr, and D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci, 468(2016), p. 334.

    Article  CAS  Google Scholar 

  16. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, and L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Purif. Technol., 68(2009), No. 3, p. 312.

    Article  CAS  Google Scholar 

  17. L. Santona, P. Castaldi, and P. Melis, Evaluation of the interaction mechanisms between red muds and heavy metals, J. Hazard. Mater, 136(2006), No. 2, p. 324.

    Article  CAS  Google Scholar 

  18. M.K. Sahu, S. Mandal, S.S. Dash, P. Badhai, and R.K. Patel, Removal of Pb(II) from aqueous solution by acid activated red mud, J. Environ. Chem. Eng., 1(2013), No. 4, p. 1315.

    Article  CAS  Google Scholar 

  19. S. Sushil and V.S. Batra, Catalytic applications of red mud, an aluminium industry waste: A review, Appl. Catal. B, 81(2008), No. 1-2, p. 64.

    Article  CAS  Google Scholar 

  20. J.C. Hunter, Preparation of a new crystal form of manganese dioxide: λ-MnO2, J. Solid State Chem., 39(1981), No. 2, p. 142.

    Article  CAS  Google Scholar 

  21. Y.J. Tu, C.F. You, C.K. Chang, and S.L. Wang, XANES evidence of arsenate removal from water with magnetic ferrite, J. Environ. Manage., 120(2013), p. 114.

    Article  CAS  Google Scholar 

  22. Y.J. Tu, C.F. You, C.K. Chang, S.L. Wang, and T.S. Chan, Arsenate adsorption from water using a novel fabricated copper ferrite, Chem. Eng. J., 198-199(2012), p. 440.

    Article  CAS  Google Scholar 

  23. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall, 1(1953), No. 1, p. 22.

    Article  CAS  Google Scholar 

  24. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H.M. Kamari, and N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process, Ceram. Int., 40(2014), No. 4, p. 5881.

    Article  CAS  Google Scholar 

  25. G.F. Goya and H.R. Rechenberg, Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles, J. Magn. Magn. Mater., 196-197(1999), p. 191.

    Article  Google Scholar 

  26. S. Bid and S.K. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld's analysis, Mater. Chem. Phys., 82(2003), No. 1, p. 27.

    Article  CAS  Google Scholar 

  27. S. Kleiner, F. Bertocco, F.A. Khalid, and O. Beffort, Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al-TiO2 system, Mater. Chem. Phys., 89(2005), No. 2-3, p. 362.

    Article  CAS  Google Scholar 

  28. S.H. Zhang, R.X. Shi, and Y. Tan, Comparison of the solubility of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water, J. Solution Chem., 47(2018), p. 1112.

    Article  CAS  Google Scholar 

  29. R.A. Shawabkeh, Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust, Hydrometallurgy, 104(2010), No. 1, p. 61.

    Article  CAS  Google Scholar 

  30. J. Hu, I.M.C. Lo, and G.H. Chen, Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles, Langmuir, 21(2005), No. 24, p. 11173.

    Article  CAS  Google Scholar 

  31. S.S. Mandaokar, D.M. Dharmadhikari, and S.S. Dara, Retrieval of heavy metal ions from solution via ferritisation, Environ. Pollut, 83(1994), No. 3, p. 277.

    Article  CAS  Google Scholar 

  32. G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, and K. Lal, Synthesis and characterization of Ni-Zn ferrite nano particles, J. Magn. Magn. Mater, 322(2010), No. 8, p. 1015.

    Article  CAS  Google Scholar 

  33. D.W. Green and R.H. Perry, Perry's Chemical Engineers' Handbook, 8th Ed., McGraw-Hill, New York, 2007.

    Google Scholar 

  34. Q.L. Li, Y.F. Wang, and C.B. Chang, Study of Cu, Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method, J. Alloys Compd, 505(2010), No. 2, p. 523.

    Article  CAS  Google Scholar 

  35. A. Gajović, S. Šturm, B. Jančar, A. Šantić, K. Žagar, and M. Čeh, The synthesis of pure - phase bismuth ferrite in the Bi-Fe-O system under hydrothermal conditions without a mineralizer, J. Am. Ceram. Soc, 93(2010), No. 10, p. 3173.

    Article  CAS  Google Scholar 

  36. M. Hua, S.J. Zhang, B.C. Pan, W.M. Zhang, L. Lv, and Q.X. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review, J. Hazard. Mater, 211-212(2012), p. 317.

    Article  CAS  Google Scholar 

  37. D. Mohan and C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazard. Mater, 142(2007), No. 1-2, p. 1.

    Article  CAS  Google Scholar 

  38. D. Choi, G.E. Blomgren, and P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater., 18(2006), No. 9, p. 1178.

    Article  CAS  Google Scholar 

  39. S. Mustafa, M.I. Zaman, R. Gul, and S. Khan, Effect of Ni2+ loading on the mechanism of phosphate anion sorption by iron hydroxide, Sep. Purif. Technol, 59(2008), No. 1, p. 108.

    Article  CAS  Google Scholar 

  40. R. Kefirov, E. Ivanova, K. Hadjiivanov, S. Dzwigaj, and M. Che, FTIR characterization of Fe3+-OH groups in Fe-H-BEA zeolite: Interaction with CO and NO, Catal. Lett, 125(2008), p. 209.

    Article  CAS  Google Scholar 

  41. G. Mariani, M. Fabbri, F. Negrini, and P.L. Ribani, High-gradient magnetic separation of pollutant from wastewaters using permanent magnets, Sep. Purif. Technol, 72(2010), No. 2, p. 147.

    Article  CAS  Google Scholar 

  42. S.D. Shenoy, P.A. Joy, and M.R. Anantharaman, Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite, J Magn. Magn. Mater, 269(2004), No. 2, p. 217.

    Article  CAS  Google Scholar 

  43. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, and J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite, J. Phys. Condens. Matter, 12(2000), No. 35, p. 7795.

    Article  CAS  Google Scholar 

  44. M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, X.L. Wu, C.W. Hu, and Z.L. Wang, Single-crystal dendritic micropines of magnetic α-Fe2O3: Large-scale synthesis, formation mechanism, and properties, Angew. Chem. Int. Ed, 44(2005), No. 27, p. 4197.

    Article  CAS  Google Scholar 

  45. M. Ahmadzadeh, A. Ataie, and E. Mostafavi, The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3, J. Alloys Compd, 622(2015), p. 548.

    Article  CAS  Google Scholar 

  46. E. Murad, Magnetic properties of microcrystalline iron(III) oxides and related materials as reflected in their Mössbauer spectra, Phys. Chem. Miner, 23(1996), p. 248.

    Article  CAS  Google Scholar 

  47. M. Atif, S.K. Hasanain, and M. Nadeem, Magnetization of sol-gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Commun., 138(2006), No. 8, p. 416.

    Article  CAS  Google Scholar 

  48. G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochem., 22(2007), No. 2, p. 249.

    Article  CAS  Google Scholar 

  49. K. Verburg and P. Baveye, Hysteresis in the binary exchange of cations on 2:1 clay minerals: A critical review, Clays Clay Miner, 42(1994), p. 207.

    Article  CAS  Google Scholar 

  50. S.X. Zhang, H.Y. Niu, Y.Q. Cai, X.L. Zhao, and Y.L. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, Chem. Eng. J., 158(2010), No. 3, p. 599.

    Article  CAS  Google Scholar 

  51. M. Benavente, L. Moreno, and J. Martinez, Sorption of heavy metals from gold mining wastewater using chitosan, J. Taiwan Inst. Chem. Eng., 42(2011), No. 6, p. 976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Raygan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azar, M.S., Raygan, S. & Sheibani, S. Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder. Int J Miner Metall Mater 27, 526–537 (2020). https://doi.org/10.1007/s12613-019-1931-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1931-5

Keywords

Navigation