Skip to main content

Advertisement

Log in

Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Li-ion batteries (LIBs) have demonstrated great promise in electric vehicles and hybrid electric vehicles. However, commercial graphite materials, the current predominant anodes in LIBs, have a low theoretical capacity of only 372 mAh·g-1, which cannot meet the ever-increasing demand of LIBs for high energy density. Nanoscale Si is considered an ideal form of Si for the fabrication of LIB anodes as Si-C composites. Synthesis of nanoscale Si in a facile, cost-effective way, however, still poses a great challenge. In this work, nanoscale Si was prepared by a controlled magnesiothermic reaction using diatomite as the Si source. It was found that the nanoscale Si prepared under optimized conditions (800°C, 10 h) can deliver a high initial specific capacity (3053 mAh·g-1 on discharge, 2519 mAh·g-1 on charge) with a high first coulombic efficiency (82.5%). When using sand-milled diatomite as a precursor, the obtained nanoscale Si exhibited a well-dispersed morphology and had a higher first coulombic efficiency (85.6%). The Si-C (Si: graphite = 1:7 in weight) composite using Si from the sand-milled diatomite demonstrated a high specific capacity (over 700 mAhg”1 at 100 mAg”1), good rate capability (587mAh·g-1 at 500 mA·g-1), and a long cycle life (480 mAh·g-1 after 200 cycles at 500 mA·g-1). This work gives a facile method to synthesize nanoscale Si with both high capacity and high first coulombic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon, Building better batteries, Nature, 451(2008), No. 7179, p. 652.

    Article  CAS  Google Scholar 

  2. N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett, 12(2012), No. 6, p. 3315.

    Article  CAS  Google Scholar 

  3. H. Wu and Y. Cui, Designing nano structured Si anodes for high energy lithium ion batteries, Nano Today, 7(2012), No. 5, p. 414.

    Article  CAS  Google Scholar 

  4. S. Xin, Y.G. Guo, and L.J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Ace. Chem. Res., 45(2012), No. 10, p. 1759.

    Article  CAS  Google Scholar 

  5. H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, Research on advanced materials for Li-ion batteries, Adv. Mater., 21(2009), No. 45, p. 4593.

    Article  CAS  Google Scholar 

  6. K. Kang, Y.S. Meng, J. Breger, C.P. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 311(2006), No. 5763, p. 977.

    Article  CAS  Google Scholar 

  7. J. Park, G.P. Kim, I. Nam, S. Park, and J. Yi, One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries, Nanotechnology, 24(2012), No. 2, art. No. 025602.

  8. J.H. Zhu, J. Yang, Z.X. Xu, J.L. Wang, Y.N. Nuli, X.D. Zhuang, and X.L. Feng, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries, Nanoscale, 9(2017), No. 25, p. 8871.

    Article  CAS  Google Scholar 

  9. J.W. Liang, X.N. Li, Z.G. Hou, W.Q. Zhang, Y.C. Zhu, and Y.T. Qian, A Deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries, ACS Nano, 10(2016), No. 2, p. 2295.

    Article  CAS  Google Scholar 

  10. J. Hassoun, S. Panero, P. Reale, and B. Scrosati, A new, safe, high-rate and high-energy polymer lithiumion battery, Adv. Mater., 21(2009), No. 47, p. 4807.

    Article  CAS  Google Scholar 

  11. H.D. Chen, S.F. Wang, X.J. Liu, X.H. Hou, F.M. Chen, H. Pan, H.Q. Qin, K.H. Lam, Y.C. Xia, and G.F. Zhou, Double-coated Si-based composite composed with carbon layer and graphene sheets with void spaces for lithium-ion batteries, Electrochim. Acta, 288(2018), p. 134.

    Article  CAS  Google Scholar 

  12. J. Xie, G.Q. Wang, Y. Huo, S.C. Zhang, G.S. Cao, and X.B. Zhao, Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries, Electrochim. Acta, 135(2014), p. 94.

    Article  CAS  Google Scholar 

  13. M. Zhang, T.F. Zhang, Y.F. Ma, and Y.S. Chen, Latest development of nanostructured Si/C materials for lithium anode studies and applications, Energy Storage Mater., 4(2016), p. 1.

    Article  CAS  Google Scholar 

  14. A. Casimir, H.G. Zhang, O. Ogoke, J.C. Amine, J. Lu, and G. Wu, Silicon-based anodes for lithiumion batteries: Effectiveness of materials synthesis and electrode preparation, Nano Energy, 27(2016), p. 359.

    Article  CAS  Google Scholar 

  15. G.X. Wang, S. Bewlay, L. Yang, J.Z. Wang, Y. Chen, J. Yao, H.K. Liu, and S.X. Dou, Nanostructured electrode materials for rechargeable lithium-ion battery applications, J. Mater. Sci. Technol, 21(2005), No. SI, p. 17.

    CAS  Google Scholar 

  16. B.R. Liu, P. Soares, C. Checkles, Y. Zhao, and G.H. Yu, Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes, Nano Lett, 13(2013), No. 7, p. 3414.

    Article  CAS  Google Scholar 

  17. R. Teki, M.K. Datta, R. Krishnan, T.C. Parker, T.M. Lu, P.N. Kumta, and N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5(2009), No. 20, p. 2236.

    Article  CAS  Google Scholar 

  18. J.L. Goldman, B.R. Long, A.A. Gewirth, and R.G. Nuzzo, Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes, Adv. Fund. Mater, 21(2011), No. 13, p. 2412.

    Article  CAS  Google Scholar 

  19. K.X. Xiang, X.Y. Wang, M.F. Chen, Y.Q. Shen, H.B. Shu, and X.K. Yang, Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode, J. Alloys Compd., 695(2017), p. 100.

    Article  CAS  Google Scholar 

  20. U. Kasavajjula, C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithiumion secondary cells, J. Power Sources, 163(2007), No. 2, p. 1003.

    Article  CAS  Google Scholar 

  21. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater, 9(2010), No. 4, p. 353.

    Article  CAS  Google Scholar 

  22. A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithiumion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater, 25(2018), No. 12, p. 1473.

    Article  CAS  Google Scholar 

  23. H.D. Chen, K.X. Shen, X.H. Hou, G.Z. Zhang, S.F. Wang, F.M. Chen, L.J. Fu, H.Q. Qin, Y.C. Xia, and G.F. Zhou, Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithiumion batteries, Appl. Surf. Sci., 470(2019), p. 496.

    Article  CAS  Google Scholar 

  24. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.B. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol, 7(2012), No. 5, p. 310.

    Article  CAS  Google Scholar 

  25. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334(2011), No. 6052, p. 75.

    Article  CAS  Google Scholar 

  26. Y. Chen, S. Zeng, J.F. Qian, Y.D. Wang, Y.L. Cao, H.X. Yang, and X.P. Ai, Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 5, p. 3508.

    Article  CAS  Google Scholar 

  27. D.J. Lee, H. Lee, M.H. Ryou, G.B. Han, J.N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, and J.K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries, ACS Appl. Mater. Interfaces, 5(2013), No. 22, p. 12005.

    Article  CAS  Google Scholar 

  28. Z.L. Zhang, Y.H. Wang, W.F. Ren, Q.Q. Tan, Y.F. Chen, H. Li, Z.Y. Zhong, and F.B. Su, Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries, Angew. Chem. Int. Ed., 126(2014), No. 20, p. 5265.

    Article  Google Scholar 

  29. S.Y. Lim, S. Chae, S.H. Jung, Y. Hyeon, W. Jang, W.S. Yoon, J.Y. Choi, and D. Whang, Loose-fit graphitic encapsulation of silicon nanowire for one-dimensional Si anode design, J. Mater. Sci. Technol, 33(2017), No. 10, p. 1120.

    Article  Google Scholar 

  30. W.Y. Li, Y.B. Tang, W.P. Kang, Z.Y. Zhang, X. Yang, Y. Zhu, W.J. Zhang, and C.S. Lee, Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes, Small, 11(2015), No. 11, p. 1345.

    Article  CAS  Google Scholar 

  31. H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, and Y.C. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature, Carbon, 130(2018), p. 433.

    Article  CAS  Google Scholar 

  32. S. Chae, N. Kim, J. Ma, J. Cho, and M. Ko, One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries, A/v. Energy Mater., 7(2017), No. 15, art. No. 1700071.

  33. M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444.

    Article  CAS  Google Scholar 

  34. H. Wang, J. Xie, S.C. Zhang, G.S. Cao, and X.B. Zhao, Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials, RSC Adv., 6(2016), No. 74, p. 69882.

    Article  CAS  Google Scholar 

  35. H. Wolf, Z. Pajkic, T. Gerdes, and M. Willert-Porada, Carbon-fiber-silicon-nanocomposites for lithiumion battery anodes by microwave plasma chemical vapor deposition, J. Power Sources, 190(2009), No. 1, p. 157.

    Article  CAS  Google Scholar 

  36. J.Y. Liu, N. Li, M.D. Goodman, H.G. Zhang, E.S. Epstein, B. Huang, Z. Pan, J. Kim, J.H. Choi, X.J. Huang, J.H. Liu, K.J. Hsia, S.J. Dillon, and P.V. Braun, Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Liion battery anodes, ACS Nano, 9(2015), No. 2, p. 1985.

    Article  CAS  Google Scholar 

  37. S.S. Hwang, C.G. Cho, and H. Kim, Polymer microsphere embedded Si/graphite composite anode material for lithium rechargeable battery, Electrochim. Acta, 55(2010), No. 9, p. 3236.

    Article  CAS  Google Scholar 

  38. S. Choi, T. Bok, J. Ryu, J.I. Lee, J. Cho, and S. Park, Revisit of metallothermic reduction for macroporous Si: Compromise between capacity and volume expansion for practical Li-ion battery, Nano Energy, 12(2015), p. 161.

    Article  CAS  Google Scholar 

  39. J.H. Jeong, K.H. Kim, D.W. Jung, K. Kim, S.M. Lee, and E.S. Oh, High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries, J. Power Sources, 300(2015), p. 182.

    Article  CAS  Google Scholar 

  40. M.S. Wang, L.Z. Fan, M. Huang, J.H. Li, and X.H. Qu, Conversion of diatomite to porous Si/C composites as promising anode materials for lithiumion batteries, J. Power Sources, 219(2012), p. 29.

    Article  CAS  Google Scholar 

  41. Y. Wang, Y.D. Wu, K.H. Wu, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater, 26(2019), No. 7, p. 831.

    Article  CAS  Google Scholar 

  42. S. Fang, L.F. Shen, Z.K. Tong, H. Zheng, F. Zhang, and X.G. Zhang, Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability, Nanoscale, 7(2015), No. 16, p. 7409.

    Article  CAS  Google Scholar 

  43. X.F. Tang, G.W. Wen, and Y. Song, Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries, J. Alloys Compd., 739(2018), p. 510.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51572238), Zhejiang Provincial Natural Science Foundation (No. LY19E020013), and the Joint Research Project of Zhejiang University with Zotye Automobile Corporation Limited on Si-Based Anode Materials (No. P-ZH-2018-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Lf., Zhang, Sy., Xie, J. et al. Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries. Int J Miner Metall Mater 27, 515–525 (2020). https://doi.org/10.1007/s12613-019-1900-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1900-z

Keywords

Navigation