Skip to main content

Advertisement

Log in

Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices. We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous supercapacitor is fabricated. The fibrous electrode exhibits a high strength of 11.68 MPa, high conductivity of 342 S/cm, and high specific capacitances (21.8 mF/cm, 36.45 F/cm3, and 95 F/g). The specific capacitance of the assembled all-solid-state hybrid fiber-shaped supercapacitor reaches 14.3 F/cm3. After 5000 charge-discharge cycles, 97% of the capacitance of the hybrid supercapacitor is maintained. These high-strength electrochemical electrode materials could be potential candidates for applications in practical and large-scale energy storage systems and textile clothes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, W.; Chen, S.; Yang, S.; Chen, W.; Weng, W.; Cheng, Y.; Zhu, M. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon2017, 113, 151–158.

    Article  CAS  Google Scholar 

  2. Shi, Q.; Sun, J.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Advanced functional fiber and smart textile. Adv. Fiber Mater.2019, 1, 3–31.

    Article  Google Scholar 

  3. Shao, Y.; El-Kady, M. F.; Wang, L. J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M. F.; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev.2015, 44, 3639–3665.

    Article  CAS  Google Scholar 

  4. Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    Article  CAS  Google Scholar 

  5. Huang, G.; Hou, C.; Shao, Y.; Zhu, B.; Jia, B.; Wang, H.; Zhang, Q.; Li, Y. High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy2015, 12, 26–32.

    Article  CAS  Google Scholar 

  6. Hu, Y.; Cheng, H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z.; Qu, L. All-in-one graphene fiber supercapacitor. Nnosaale2014, 6, 6448–6451.

    CAS  Google Scholar 

  7. Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S.; Liu, J. P. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater.2011, 23, 821–842.

    Article  CAS  Google Scholar 

  8. Zou, J.; Zhang, M.; Huang, J.; Bian, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z. L. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv. Energy Mater.2018, 8, 1702671.

    Article  Google Scholar 

  9. Fan, L.; Lin, K.; Wang, J.; Ma, R.; Lu, B. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, 1800804.

    Article  Google Scholar 

  10. Couly, C.; Alhabeb, M.; Van Aken, K. L.; Kurra, N.; Gomes, L.; Navarro-Suárez, A. M.; Anasori, B.; Alshareef, H. N.; Gogotsi, Y. Asymmetric flexible mxene-reduced graphene oxide microsupercapacitor. Adv. Electron. Mater.2018, 4, 1700339.

    Article  Google Scholar 

  11. Li, J.; Shao, Y.; Shi, Q.; Hou, C.; Zhang, Q.; Li, Y.; Kaner, R. B.; Wang, H. Calligraphy-inspired brush written foldable supercapacitors. Nano Energy2017, 38, 428–437.

    Article  CAS  Google Scholar 

  12. He, G.; Ling, M.; Han, X.; El Amaiem, D. I. A.; Shao, Y.; Li, Y.; Li, W.; Ji, S.; Li, B.; Lu, Y. Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Stor. Mater. 2017, 9, 119–125.

    Article  Google Scholar 

  13. Shao, Y.; El-Kady, M. F.; Lin, C. W.; Zhu, G.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q.; Li, Y.; Wang, H.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater.2016, 28, 6719–6726.

    Article  CAS  Google Scholar 

  14. El-Kady, M. F.; Shao, Y.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater.2016, 1, 16033.

    Article  CAS  Google Scholar 

  15. Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R. B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz.2017, 4, 1145–1150.

    Article  CAS  Google Scholar 

  16. Ma, W.; Chen, S.; Yang, S.; Chen, W.; Cheng, Y.; Guo, Y.; Peng, S.; Ramakrishna, S.; Zhu, M. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J. Power Sources2016, 306, 481–488.

    Article  CAS  Google Scholar 

  17. Shao, Y.; Wang, H.; Zhang, Q.; Li, Y. Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. NPG Asia Mater.2014, 6, e119.

    Article  CAS  Google Scholar 

  18. Wang, G.; Huang, W.; Eastham, N. D.; Fabiano, S.; Manley, E. F.; Zeng, L.; Wang, B.; Zhang, X.; Chen, Z.; Li, R. Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. Proc. Natl. Acad. Sci. 2017, 114, E10066–E10073.

    Article  CAS  Google Scholar 

  19. Wang, G.; Persson, N.; Chu, P. H.; Kleinhenz, N.; Fu, B.; Chang, M.; Deb, N.; Mao, Y.; Wang, H.; Grover, M. A. Microfluidic crystal engineering of π-conjugated polymers. ACS Nano2015, 9, 8220–8230.

    Article  CAS  Google Scholar 

  20. Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed.2019, 58, 4129–4142.

    Article  CAS  Google Scholar 

  21. Wang, G.; Swick, S. M.; Matta, M.; Mukherjee, S.; Strzalka, J. W.; Logsdon, J. L.; Fabiano, S.; Huang, W.; Aldrich, T. J.; Yang, T. Photovoltaic blend microstructure for high efficiency post-fullerene solar cells. To tilt or not to tilt? J. Am. Chem. Soc.2019, 141, 13410–13420.

    Article  CAS  Google Scholar 

  22. Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent advancement of nanostructured carbon for energy applications. Chem. Rev.2015, 115, 5159–5223.

    Article  CAS  Google Scholar 

  23. Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science2000, 290, 1331–1334.

    Article  CAS  Google Scholar 

  24. Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater.2019, 1902028.

    Google Scholar 

  25. Deng, J.; Zhang, Y.; Zhao, Y.; Chen, P.; Cheng, X.; Peng, H. A Shape-memory supercapacitor fiber. Angew. Chem. Int. Ed. 2015, 54, 15419–15423.

    Article  CAS  Google Scholar 

  26. Wang, L.; Wu, Q.; Zhang, Z.; Zhang, Y.; Pan, J.; Li, Y.; Zhao, Y.; Zhang, L.; Cheng, X.; Peng, H. Elastic and wearable ring-type supercapacitors. J. Mater. Chem. A2016, 4, 3217–3222.

    Article  CAS  Google Scholar 

  27. Chen, X.; Lin, H.; Chen, P.; Guan, G.; Deng, J.; Peng, H. Smart, stretchable supercapacitors. Adv. Mater.2014, 26, 4444–4449.

    Article  CAS  Google Scholar 

  28. Wang, X.; Sun, H.; Yue, X.; Yu, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 2018, 168, 126–132.

    Article  CAS  Google Scholar 

  29. Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed.2013, 52, 13453–13457.

    Article  CAS  Google Scholar 

  30. Li, J.; Shao, Y.; Jiang, P.; Zhang, Q.; Hou, C.; Li, Y.; Wang, H. 1T-Molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. J. Mater. Chem. A2019, 7, 3143–3149.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2232019A3-02), DHU Distinguished Young Professor Program (No. LZB2019002), and Young Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001). J. L. acknowledges funding provided by the Donghua University Doctoral Innovation Fund Program (Nos. 17D310606, 106-06-0019058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Hui Li or Hong-Zhi Wang.

Electronic Supplementary Information

10118_2020_2381_MOESM1_ESM.pdf

Highly stretchable and conductive hybrid fiber for high-performance fibrous electrodes and all-solid-state supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, GQ., Yang, XY., Li, JH. et al. Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors. Chin J Polym Sci 38, 531–539 (2020). https://doi.org/10.1007/s10118-020-2381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2381-2

Keywords

Navigation