Skip to main content
Log in

Study of Dry Wear Behavior and Resistance in Samples of a Horizontally Solidified and T6/Heat-Treated Automotive AlSiMg Alloy

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To investigate dry wear behavior in an aluminum-based automotive alloy, transient horizontal solidification experiments using a water-cooled directional solidification device have been performed with the Al7Si0.3Mg alloy (wt%). Samples of the as-cast ingot at positions (P) 2, 4, 6, 40, and 80 mm from the cooled interface were subjected to precipitation hardening heat treatment (T6-type). The heat treatment has been applied under the following conditions: solution treatment for 3 h at 520 ± 2 °C, followed by quenching in warm water (70 ± 2 °C), aging for 3 h at 155 ± 2 °C and air-cooling. Dry wear tests were performed on both the as-cast and heat-treated samples. The wear tests were carried out by rotary-fixed ball wear machine means. The analyzed parameters were solidification growth and cooling rates (VL and TR), secondary dendritic spacings (λ2), and wear volume and rate (WV and WR). An interrelation between these parameters has been conducted and experimental mathematical equations have been proposed to characterize the WV and WR dependence on P, VL, TR and λ2. The T6-heat treatment has affected the length of the as-cast dendritic scale, increasing the λ2 values as well as the wear features of the investigated automotive alloy. Finer and coarser dendritic microstructures inherited better wear resistance for the as-cast and heat-treated samples, respectively. An evaluation by occupied area fraction (%IRAF) of interdendritic regions on wear resistance in the as-cast and heat-treated samples has been performed. It has been observed higher and lower IRAF values in the as-cast and heat-treated samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wu, X., Zhang, H., Ma, Z., Tao, T., Gui, J., Song, W., Yang, B., Zhang, H.: Interactions between Fe-rich intermetallics and Mg-Si phase in Al-7Si-xMg alloys. J. Alloys Compd. 786, 205–214 (2019)

    CAS  Google Scholar 

  2. Chen, R., Xu, Q., Guo, H., Xia, Z., Wu, Q., Liu, B.: Correlation of solidification microstructure refining scale, Mg composition and heat treatment conditions with mechanical properties in Al−7Si−Mg cast aluminum alloys. Mater. Sci. Eng. A 685, 391–402 (2017)

    CAS  Google Scholar 

  3. Barbosa, C.R., Machado, G.H., Azevedo, H.M., Rocha, F.S., Filho, J.C., Pereira, A.A., Rocha, O.: Tailoring of processing parameters, dendritic microstructure, Si/intermetallic particles and microhardness in as-cast and heat-treated samples of Al7Si0.3Mg alloy. Mat. Int. Met (2019). https://doi.org/10.1007/s12540-019-00334-y

    Article  Google Scholar 

  4. Magno, I.A., Souza, F.A., Costa, M.O., Nascimento, J.M., Silva, A.P., Costa, T.S., Rocha, O.L.: Interconnection between the solidification and precipitation hardening processes of an AlSiCu alloy. Mater. Sci. Technol. 35(7), 791–806 (2019)

    CAS  Google Scholar 

  5. Souza, F.A., Magno, I.A., Costa, M.O., Barros, A.S., Nascimento, J.M., Carvalho, D.B., Rocha, O.L.: Unsteady-state horizontal solidification of an Al–Si–Cu–Fe alloy: relationship between thermal parameters and microstructure with mechanical properties/fracture feature. Met. Mater. Int. 25(1), 18–33 (2019)

    CAS  Google Scholar 

  6. Costa, T.A., Dias, M., Gomes, L.G., Rocha, O.L., Garcia, A.: Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al–Si–Cu alloy. J. Alloys Compd. 683, 485–494 (2016)

    CAS  Google Scholar 

  7. Zhu, M., Jian, Z., Yang, G., Zhou, Y.: Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys. Mater. Des. 1980–2015(36), 243–249 (2012)

    Google Scholar 

  8. Wang, Q., Davidson, C.: Solidification and precipitation behaviour of Al-Si-Mg casting alloys. J. Mater. Sci. 36(3), 739–750 (2001)

    CAS  Google Scholar 

  9. Yang, H., Ji, S., Fan, Z.: Effect of heat treatment and Fe content on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys. Mater. Des. 85, 823–832 (2015)

    CAS  Google Scholar 

  10. Chen, R., Shi, Y.-F., Xu, Q.-Y., Liu, B.-C.: Effect of cooling rate on solidification parameters and microstructure of Al−7Si−0.3 Mg−0.15 Fe alloy. Trans. Nonferr. Met. Soc. China 24(6), 1645–1652 (2014)

    CAS  Google Scholar 

  11. Barbosa, C.R., Lima, J.O.M.D., Machado, G.M.H., Azevedo, H.A.M.D., Rocha, F.S., Barros, A.S., Rocha, O.F.L.D.: Relationship between aluminum-rich/intermetallic phases and microhardness of a horizontally solidified AlSiMgFe alloy. Mater. Res (2019). https://doi.org/10.1590/1980-5373-mr-2018-0365

    Article  Google Scholar 

  12. Lima, J., Barbosa, C., Magno, I., Nascimento, J., Barros, A., Oliveira, M., Souza, F., Rocha, O.: Microstructural evolution during unsteady-state horizontal solidification of Al-Si-Mg (356) alloy. Trans. Nonferr. Met. Soc. China 28(6), 1073–1083 (2018)

    CAS  Google Scholar 

  13. Wu, M.-Z., Zhang, J.-W., Zhang, Y.-B., Wang, H.-Q.: Effects of Mg content on the fatigue strength and fracture behavior of Al-Si-Mg casting alloys. J. Mater. Eng. Perform. 27(11), 5992–6003 (2018)

    CAS  Google Scholar 

  14. Taghiabadi, R., Ghasemi, H.: Dry sliding wear behaviour of hypoeutectic Al–Si alloys containing excess iron. Mater. Sci. Technol. 25(8), 1017–1022 (2009)

    CAS  Google Scholar 

  15. Ilangovan, S.: Effects of Solidification time on mechanical properties and wear behaviour of sand cast Aluminium alloy. Int. J. Res. Eng. Technol. 3(2), 71–75 (2014)

    Google Scholar 

  16. Lin, C., Wu, S., Lü, S., Zeng, J., An, P.: Dry sliding wear behavior of rheocast hypereutectic Al–Si alloys with different Fe contents. Trans. Nonferr. Met. Soc. China 26(3), 665–675 (2016)

    CAS  Google Scholar 

  17. Kaiser, M.S., Sabbir, S.H., Kabir, M.S., Soummo, M.R., Nur, M.A.: Study of mechanical and wear behaviour of hyper-eutectic Al-Si automotive alloy through Fe. Ni and Cr addition. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2017-1096

    Article  Google Scholar 

  18. Silva, A.P., Spinelli, J.E., Garcia, A.: Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys. J. Alloys Compd. 480(2), 485–493 (2009)

    CAS  Google Scholar 

  19. Silva, A.P., Spinelli, J.E., Garcia, A.: Thermal parameters and microstructure during transient directional solidification of a monotectic Al–Bi alloy. J. Alloys Compd. 475(1–2), 347–351 (2009)

    CAS  Google Scholar 

  20. Cruz, K.S., Meza, E.S., Fernandes, F.A., Quaresma, J.M., Casteletti, L.C., Garcia, A.: Dendritic arm spacing affecting mechanical properties and wear behavior of Al-Sn and Al-Si alloys directionally solidified under unsteady-state conditions. Metall. Mater. Trans. A 41(4), 972–984 (2010)

    Google Scholar 

  21. Silva, A.P., Spinelli, J.E., Mangelinck-Noël, N., Garcia, A.: Microstructural development during transient directional solidification of hypermonotectic Al–Bi alloys. Mater. Des. 31(10), 4584–4591 (2010)

    CAS  Google Scholar 

  22. Freitas, E.S., Spinelli, J.E., Casteletti, L.C., Garcia, A.: Microstructure–wear behavior correlation on a directionally solidified Al–In monotectic alloy. Tribol. Int. 66, 182–186 (2013)

    CAS  Google Scholar 

  23. Freitas, E.S., Silva, A.P., Spinelli, J.E., Casteletti, L.C., Garcia, A.: Inter-relation of microstructural features and dry sliding wear behavior of monotectic Al–Bi and Al–Pb alloys. Tribol. Lett. 55(1), 111–120 (2014)

    CAS  Google Scholar 

  24. Costa, T.A., Dias, M., Freitas, E.S., Casteletti, L.C., Garcia, A.: The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys. J. Alloys Compd. 689, 767–776 (2016)

    CAS  Google Scholar 

  25. Reyes, R.V., Pinotti, V.E., Afonso, C.R., Casteletti, L.C., Garcia, A., Spinelli, J.E.: Processing, As-Cast Microstructure and Wear Characteristics of a Monotectic Al-Bi-Cu Alloy. J. Mater. Eng. Perform. 28(2), 1201–1212 (2019)

    CAS  Google Scholar 

  26. Costa, T.A., Freitas, E.S., Dias, M., Brito, C., Cheung, N., Garcia, A.: Monotectic Al–Bi–Sn alloys directionally solidified: Effects of Bi content, growth rate and cooling rate on the microstructural evolution and hardness. J. Alloys Compd. 653, 243–254 (2015)

    CAS  Google Scholar 

  27. Wu, X.-F., Zhang, G.-A., Wu, F.-F.: Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite. Trans. Nonferr. Met. Soc. China 23(6), 1532–1542 (2013)

    CAS  Google Scholar 

  28. Phanikumar, G., Dutta, P., Galun, R., Chattopadhyay, K.: Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al–Bi alloy. Mater. Sci. Eng. A 371(1–2), 91–102 (2004)

    Google Scholar 

  29. Dai, R., Zhang, J., Zhang, S., Li, J.: Liquid immiscibility and core-shell morphology formation in ternary Al–Bi–Sn alloys. Mater. Charact. 81, 49–55 (2013)

    CAS  Google Scholar 

  30. Rosales, I., Gonzalez-Rodriguez, G., Gama, J.L., Guardian, R.: Bismuth effect on the mechanical properties of antifriction Al-Sn alloys. Mater. Sci. Appl. 05(5), 330–337 (2014)

    Google Scholar 

  31. Farahany, S., Ourdjini, A., Idris, M.H., Thai, L.: Effect of bismuth on microstructure of unmodified and Sr-modified Al-7Si-0.4 Mg alloys. Trans. Nonferr. Met. Soc. China 21(7), 1455–1464 (2011)

    CAS  Google Scholar 

  32. Azevedo, H.M., Machado, G.H., Barbosa, C.R., Rocha, F.S., Costa, R.B., Costa, T.A., Rocha, O.L.: Microstructural Development of an AlNiBi alloy and influence of the transient horizontal solidification parameters on microhardness. Metall. Mater. Trans. A 49(10), 4722–4734 (2018)

    CAS  Google Scholar 

  33. Prasada, A.K., Das, K., Murty, B., Chakraborty, M.: Effect of grain refinement on wear properties of Al and Al–7Si alloy. Wear 257(1–2), 148–153 (2004)

    Google Scholar 

  34. Blau, J.P.: Friction Lubrication and Wear Technology. ASM International, Materials Parl, Ohio (1995)

    Google Scholar 

  35. Zum Gahr, K.-H.: Microstructure and wear of materials. Elsevier, Amsterdam (1987)

    Google Scholar 

  36. ZumGahr, K.H.: Abrasive wear of two-phase metallic materials with a coarse microstructure. In: Ludema, K.C. (ed.) International on Wear of Materials, pp. 45–58. American Society of Material Engineering, Vancouver (1985)

    Google Scholar 

  37. Bowden, F.P., Rowe, G.W.: The adhesion of clean metals. Proc. R. Soc. Lond. A 233(1195), 429–442 (1956)

    CAS  Google Scholar 

  38. Rutherford, K., Hutchings, I.: Theory and Application of a Micro-Scale Abrasive Wear Test. J. Test. Eval. 25(2), 250–260 (1997)

    CAS  Google Scholar 

  39. Stachowiak, G.W.: Wear: Materials, Mechanisms and Practice. Wiley, Chichester (2006)

    Google Scholar 

  40. Batista, J., Matthews, A., Godoy, C.: Micro-abrasive wear of PVD duplex and single-layered coatings. Surf. Coat. Technol. 142–144, 1137–1143 (2001)

    Google Scholar 

  41. Bose, K., Wood, R.: Optimum tests conditions for attaining uniform rolling abrasion in ball cratering tests on hard coatings. Wear 258(1–4), 322–332 (2005)

    CAS  Google Scholar 

  42. Adachi, K., Hutchings, I.: Wear-mode mapping for the micro-scale abrasion test. Wear 255(1–6), 23–29 (2003)

    CAS  Google Scholar 

  43. Gee, M., Gant, A., Hutchings, I., Bethke, R., Schiffman, K., Van Acker, K., Poulat, S., Gachon, Y., Von Stebut, J.: Progress towards standardisation of ball cratering. Wear 255(1–6), 1–13 (2003)

    CAS  Google Scholar 

  44. Rutherford, K., Hutchings, I.: A micro-abrasive wear test, with particular application to coated systems. Surf. Coat. Technol. 79(1–3), 231–239 (1996)

    CAS  Google Scholar 

  45. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, 4th edn. Elsevier Inc, Amsterdam (2014)

    Google Scholar 

  46. Cozza, R.C.: Effect of sliding distance on abrasive wear modes transition. J. Mater. Res. Technol. 4(2), 144–150 (2015)

    CAS  Google Scholar 

  47. Yi, J.Z., Gao, Y.X., Lee, P.D., Lindley, T.C.: Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum-silicon alloy (A356-T6). Mater. Sci. Eng. A. 386(1–2), 396–407 (2004)

  48. Vencl, A., Bobic, I., Arostegui, S., Bobic, B., Marinković, A., Babić, M.: Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+ graphite particles. J Alloys Compd. 506(2), 631–639 (2010)

    CAS  Google Scholar 

  49. Silva, C.A., Leal, L.R., Guimarães, E.C., Júnior, P.M., Moreira, A.L., Rocha, O.L., Silva, A.P.: Influence of thermal parameters, microstructure, and morphology of Si on machinability of an Al–7.0 wt% Si alloy directionally solidified. Adv. Mater. Sci. Eng. 2018, 1–12 (2018)

    Google Scholar 

  50. Ishikawa, M., Nakamura, T., Hirata, S., Iida, T., Nishio, K., Kogo, Y.: Mechanical properties of Mg2Si with metallic binders. Jpn. J. Appl. Phys. 54(7S2), 07JC03 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by IFPA—Federal Institute of Education, Science and Technology of Pará, Postgraduate Program in Materials Engineering (PPGEMat/IFPA), UFPA—Federal University of Pará, and CNPq—National Council for Scientific and Technological Development (Grants 302846/2017-4 and 400634/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio L. Rocha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, H.M., Botelho, T.M., Barbosa, C.R. et al. Study of Dry Wear Behavior and Resistance in Samples of a Horizontally Solidified and T6/Heat-Treated Automotive AlSiMg Alloy. Tribol Lett 68, 60 (2020). https://doi.org/10.1007/s11249-020-01302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01302-z

Keywords

Navigation