Skip to main content
Log in

Investigations on the Thermocapillary Migration of Liquid Lubricants at Different Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Thermocapillary migration describes an interfacial phenomenon that liquids can spontaneously move from the warm to the cold regions on nonuniformly heated solids. However, it is unknown how liquids react at various interfaces subjected to a thermal gradient. In this study, migration of liquid lubricants at the free surface, the plate/plate interface, and the sphere/plate interface is investigated. The results show that liquid lubricants can easily migrate at the free surface and the plate/plate interface, and the velocity at the free surface is much faster than that at the plate/plate interface. Interestingly, liquid lubricants maintain at the sphere/plate interface for a long time, and a continuous loss of a thin liquid film is observed at the cold side on the plate. The factors that influence the migration performances at these interfaces are examined. Numerical simulations are performed to reveal the mechanism and differences among them.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A rt , A at :

Relative and absolute tolerances

Ca :

Capillary number

C p :

Specific heat capacity at constant pressure

E k :

Error estimate for the degree of freedom k

F :

Volume force vector

H, W :

Eight and width of the computational domain

M:

Number of physical fields

Ma :

Marangoni number

N j :

Number of degrees of freedom in field \(j\)

P :

Pressure

Q :

Heat source

R :

Strain-rate tensor

S(x) :

Gas/liquid interface

T :

Temperature

T ref :

Reference ambient temperature

T Δ :

Thermal gradient

T 0 :

Reference temperature of liquid

U :

Velocity vector

V :

Solution vector

d :

Mean liquid thickness

l, g :

Liquid and gas

h :

Gap between the plate/plate or sphere/plate interfaces

k :

Fluid thermal conductivity

q :

Heat flux vector

x, z:

Horizontal and vertical coordinates

zmax :

Maximum value of z at a specific x

Φ:

Level set function

Ω1 :

Gas subdomain

Ω2 :

Liquid subdomain

a :

Fluid thermal diffusivity

θ :

Contact angle

β :

Slip length

ε :

Interface thickness

γ :

Surface tension of liquid

γ T :

Surface tension coefficient of liquid

μ :

Dynamic viscosity

κ :

Re-initialization parameter

ρ :

Fluid density

τ :

Viscous stress tensor

References

  1. Xu, X.F., Luo, J.B.: Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 91(12), 124102 (2007)

    Article  Google Scholar 

  2. Tadmor, R.: Marangoni flow revisited. J. Colloid Interface Sci. 332(2), 451–454 (2009)

    Article  CAS  Google Scholar 

  3. Scriven, L.E., Sternling, C.V.: The marangoni effects. Nature 187, 186–188 (1960)

    Article  Google Scholar 

  4. Jones, W.R., Jansen, M.J.: Tribology for space applications. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 222(8), 997–1004 (2008)

    Article  CAS  Google Scholar 

  5. Fote, A.A., Slade, R.A., Feuerstein, S.: The prevention of lubricant migration in spacecraft. Wear 51(1), 67–75 (1978)

    Article  Google Scholar 

  6. Dai, Q.W., Huang, W., Wang, X.L.: Surface roughness and orientation effects on the thermo-capillary migration of a droplet of paraffin oil. Exp. Therm. Fluid Sci. 57, 200–206 (2014)

    Article  CAS  Google Scholar 

  7. Dai, Q.W., Li, M., Khonsari, M.M., Huang, W., Wang, X.L.: The thermocapillary migration on rough surfaces. Lubr. Sci. 31, 163–170 (2019)

    Article  CAS  Google Scholar 

  8. Grützmacher, P.G., Rosenkranz, A., Szurdak, A., Gachot, C., Hirt, G., Mücklich, F.: Lubricant migration on stainless steel induced by bio-inspired multi-scale surface patterns. Mater. Des. 150, 55–63 (2018)

    Article  Google Scholar 

  9. Sommers, A.D., Brest, T.J., Eid, K.F.: Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates. Langmuir 29(38), 12043–12050 (2013)

    Article  CAS  Google Scholar 

  10. Galatola, P.: Spontaneous capillary propulsion of liquid droplets on substrates with nonuniform curvature. Phys. Rev. Fluids 3(10), 103601 (2018)

    Article  Google Scholar 

  11. Dai, Q.W., Ji, Y.J., Chong, Z.J., Huang, W., Wang, X.L.: Manipulating thermocapillary migration via superoleophobic surfaces with wedge shaped superoleophilic grooves. J. Colloid Interface Sci. 557, 837–844 (2019)

    Article  CAS  Google Scholar 

  12. Brochard, F.: Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5(2), 432–438 (1989)

    Article  CAS  Google Scholar 

  13. Brzoska, J.B., Brochard-Wyart, F., Rondelez, F.: Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9(8), 2220–2224 (1993)

    Article  CAS  Google Scholar 

  14. Ford, M.L., Nadim, A.: Thermocapillary migration of an attached drop on a solid surface. Phys. Fluids 6(9), 3183–3185 (1994)

    Article  Google Scholar 

  15. Chen, J.Z., Troian, S.M., Darhuber, A.A., Wagner, S.: Effect of contact angle hysteresis on thermocapillary droplet actuation. J. Appl. Phys. 97(1), 014906 (2005)

    Article  Google Scholar 

  16. Dai, Q.W., Huang, W., Wang, X.L., Khonsari, M.M.: Ringlike migration of a droplet propelled by an omnidirectional thermal gradient. Langmuir 34(13), 3806–3812 (2018)

    Article  CAS  Google Scholar 

  17. Khonsari, M.M., Booser, E.R.: Applied Tribology: Bearing Design and Lubrication. Wiley, Chichester (2008)

    Book  Google Scholar 

  18. Wu, Z.B.: Terminal states of thermocapillary migration of a planar droplet at moderate and large marangoni numbers. Int. J. Heat Mass. Tran. 105, 704–711 (2017)

    Article  CAS  Google Scholar 

  19. Tseng, Y.-T., Tseng, F.-G., Chen, Y.-F., Chieng, C.-C.: Fundamental studies on micro-droplet movement by marangoni and capillary effects. Sens. Actuator A Phys. 114(2–3), 292–301 (2004)

    Article  CAS  Google Scholar 

  20. Nguyen, H.-B., Chen, J.-C.: A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids 22(6), 062102 (2010)

    Article  Google Scholar 

  21. Le, T.-L., Chen, J.-C., Shen, B.-C., Hwu, F.-S., Nguyen, H.-B.: Numerical investigation of the thermocapillary actuation behavior of a droplet in a microchannel. Int. J. Heat Mass. Trans. 83(Supplement C), 721–730 (2015)

    Article  CAS  Google Scholar 

  22. Le, T.-L., Chen, J.-C., Nguyen, H.-B.: Numerical study of the thermocapillary droplet migration in a microchannel under a blocking effect from the heated upper wall. Appl. Therm. Eng. 122, 820–830 (2017)

    Article  CAS  Google Scholar 

  23. Liu, H., Wu, L., Ba, Y., Xi, G.: A lattice boltzmann method for axisymmetric thermocapillary flows. Int. J. Heat Mass. Trans. 104, 337–350 (2017)

    Article  Google Scholar 

  24. Liu, H., Zhang, Y.: Modelling thermocapillary migration of a microfluidic droplet on a solid surface. J. Comput. Phys. 280, 37–53 (2015)

    Article  CAS  Google Scholar 

  25. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)

    Article  Google Scholar 

  26. Olsson, E., Kreiss, G., Zahedi, S.: A conservative level set method for two phase flow ii. J. Comput. Phys. 225(1), 785–807 (2007)

    Article  Google Scholar 

  27. Dai, Q.W., Huang, W., Wang, X.L.: Contact angle hysteresis effect on the thermocapillary migration of liquid droplets. J. Colloid Interface Sci. 515, 32–38 (2018)

    Article  CAS  Google Scholar 

  28. Dai, Q.W., Khonsari, M.M., Shen, C., Huang, W., Wang, X.L.: Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient. Langmuir 32(30), 7485–7492 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by the National Natural Science Foundation of China (Grant No. 51805252), and Postdoctoral Research Foundation of China (2019M651822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwen Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on International Nanotribology Forum: Chiang Rai 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, Z., Dai, Q., Huang, W. et al. Investigations on the Thermocapillary Migration of Liquid Lubricants at Different Interfaces. Tribol Lett 68, 59 (2020). https://doi.org/10.1007/s11249-020-01299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01299-5

Keywords

Navigation