Skip to main content

Advertisement

Log in

Thermal-Controlled Frictional Behaviour of Nanopatterned Self-assembled Monolayers as Triboactive Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction is an important limitation of energy efficiency performances of MEMS/NEMS but is, in the same time, a great opportunity for harvesting energy by designing optimized tribo-electric nano-Generators (TENG). Thus, frictional behaviour can be accurately controlled in real time by using thermally sensitive periodic patterned self-assembled monolayers of n-octadecyltrichlorosilane (OTS) grafted on MEMS surfaces. Nanopatterns are currently used in order to limit the wear rate without modifying the frictional behaviour. In this work, patterns have been created by micro-contact printing (\(\upmu \hbox {CP}\)) using a polydimethylsiloxane (PDMS) stamp displaying a trapezoidal profile. Hence, pattern periodicity can be continuously changed—and then optimized from discontinuous to pseudo-continuous—by applying a controlled normal load on the soft PDMS stamp. A multiscale tribological study has been carried out on these nanopatterns by using both single-asperity and multi-asperity nanotribometers. Lateral force microscopy (LFM) provides the individual frictional behaviour of each pattern’s component, whereas the multi-asperity nanotribometer rather gives the emerging frictional behaviour induced by the patterning according to temperature. As a macroscopic crucial parameter while designing TENG’s devices, this macroscopic behaviour has to be carefully optimized for each practical applications at the molecular scale. Thus, the microscale frictional behaviour can be precisely optimized by the pattern’s periodicity, whereas the macroscopic one can be accurately controlled with values of friction coefficient ranging from 0.12 to 0.04 by varying the contact temperature. In addition, any inertial effects observed in the thermal-controlled frictional behaviour of nanopatterns can be drastically reduced using infra-red emission as thermal source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lobo, R.F.M.: Nanophysics for Energy Efficiency, Springer Briefs in Energy. Springer Cham, Cham/Heidelberg/New York/Dordrecht/London (2015)

    Google Scholar 

  2. Wang, Z.L., Lin, L., Niu, J.C.S., Zi, Y.: Triboelectric Nanogenerators. Springer, Basel (2016). ISBN 978-3-319-40038-9

    Google Scholar 

  3. Zhang, X.: Overview of Triboelectric Nanogenerators. In: Han, M., Zhang, X., Zhang, H. (eds.) Flexible and Stretchable Triboelectric Nanogenerator Devices. Wiley, Hoboken (2019)

    Google Scholar 

  4. Stempflé, P., Besnard, A., Martin, N., Domatti, A., Takadoum, J.: Accurate control of friction with nanosculptured thin coatings: application to gripping in microscale assembly. Tribol. Int. 59, 67–78 (2013)

    Google Scholar 

  5. Chaillet, N., Regnier, S.: Microrobotics for Micromanipulation. ISTE Ltd and Wiley, Hoboken (2010)

    Google Scholar 

  6. Gauthier, M., Regnier, S., Rougeot, P., Chaillet, N.: Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 3–4, 389–413 (2006)

    Google Scholar 

  7. Rakotondrabe, M., Addab, Y., Lutz, P.: Modeling and control of stick-slip. In: Voda, A. (ed.) Micropositioning Devices in Micro, Nanosystems and Systems on Chips. ISTE Ltd and Wiley, Hoboken (2010)

    Google Scholar 

  8. Braiman, Y., Barhen, J., Protopopescu, V.: Control of friction at the nanoscale. Phys. Rev. Lett. 90(9), 094301 (2003)

    CAS  Google Scholar 

  9. Stempflé, P., Domatti, A., Dang, H.-A., Takadoum, J.: Multi-asperity nanotribology of self-assembled monolayers grafted on silicon wafers displaying various crystallographic orientations and nanostructures. Tribol. Int. 82, 358–374 (2015)

    Google Scholar 

  10. Greiner, C., Felts, J.R., Dai, Z., King, W.P., Carpick, R.W.: Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding. ACS Nano 6(5), 4305–4313 (2012)

    CAS  Google Scholar 

  11. Sasaki, M., Xu, Y., Goto, M.: Control of friction force by light observed by friction force microscopy in a vacuum. Appl. Phys. Express 10, 015201 (2017)

    Google Scholar 

  12. Hendrikx, M., Schenning, A.P.H.J., Debije, M.G., Broer, D.J.: Light-triggered formation of surface topographies in azo polymers. Crystals 7(8), 1–20 (2017). https://doi.org/10.3390/cryst7080231

    Article  CAS  Google Scholar 

  13. Nanni, G., Ceseracciu, L., Oropesa-Nunez, R., Canale, C., Salvatore, P., Fragouli, D., Athanassiou, A.: Tunable friction behavior of photochromic fibrillar surfaces. Langmuir 31(22), 6072–6077 (2015)

    CAS  Google Scholar 

  14. Karuppiah, K.S.K., Zhou, Y., Woo, L.K., Sundararajan, S.: Nanoscale friction switches: friction modulation of monomolecular assemblies using external electric fields. Langmuir 25(20), 12114–12119 (2009)

    Google Scholar 

  15. Burgo, T.A.L., Silva, C.A., Balestrin, L.B.S., Galembeck, F.: Friction coefficient dependence on electrostatic tribocharging. Sci. Rep. 3, 2384 (2013)

    Google Scholar 

  16. de Beer, S.: Switchable friction using contacts of stimulus-responsive and nonresponding swollen polymer brushes. Langmuir 30, 8085–8090 (2014)

    Google Scholar 

  17. Han, J., Sun, J., Xu, S., Song, D., Han, Y., Zhu, H., Fang, L.: Tuning the friction of silicon surfaces using nanopatterns at the nanoscale. Coatings 8(1), 7 (2018). https://doi.org/10.3390/coatings8010007

    Article  CAS  Google Scholar 

  18. Srinivasan, U., Houston, M.R., Howe, R.T., Maboudian, R.: Alkylsiloxane-based self-assembled monolayers for stiction reduction in silicon micromachines. J. Microelectromech. Syst. 7(2), 252–260 (1998)

    CAS  Google Scholar 

  19. Cha, K.-H., Kim, D.E.: Investigation of the tribological behavior of octadecyltrichlorosilane deposited on silicon. Wear 251, 1169–1176 (2001)

    Google Scholar 

  20. Sung, I.-H., Yang, J.-C., Kim, D.-E., Shin, B.-S.: Micro/nano-tribological characteristics of self-assembled monolayer and its application in nano-structure fabrication. Wear 255, 808–818 (2003)

    CAS  Google Scholar 

  21. Ren, S., Yang, S., Zhao, Y., Zhou, J., Xu, T., Liu, W.: Friction and wear studies of octadecyltrichlorosilane SAM on silicon. Tribol. Lett. 13(4), 233 (2002)

    CAS  Google Scholar 

  22. Bhushan, B., Kasai, T., Kulik, G., Barbieri, L., Hoffmann, P.: AFM study of perfluoroalkylsilane and alkylsilane self-assembled monolayers for antistiction in MEMS/NEMS. Ultramicroscopy 105, 176–188 (2005)

    CAS  Google Scholar 

  23. Barriga, J., Coto, B., Fernandez, B.: Molecular dynamics study of optimal packing structure of OTS self-assembled monolayers on SiO2 surfaces. Tribol. Int. 40, 960–966 (2007)

    CAS  Google Scholar 

  24. Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B. 101, 3800–3805 (1997)

    CAS  Google Scholar 

  25. Masuko, M., Miyamoto, H., Suzuki, A.: Tribological characteristics of self-assembled monolayer with siloxane bonding to Si surface. Tribol. Int. 40, 1587–1596 (2007)

    CAS  Google Scholar 

  26. Booth, B.D., Martin, N.J., Buehler, E.A., McCabe, C., Jennings, G.K.: Tribological characterization of gradient monolayer films from trichlorosilanes on silicon. Colloids Surf. A Physicochem. Eng. Asp. 412, 57–63 (2012)

    CAS  Google Scholar 

  27. Domatti, A., Stempflé, P., Carrière, P., Takadoum, J.: Multi-asperity nanotribology of self-assembled monolayers grafted on silicon wafers displaying various crystallographic orientations and nanostructures. Tribol. Lett. 51, 207–218 (2013)

    Google Scholar 

  28. Stoyanov, P., Chromik, R.R.: Scaling effects on materials tribology: from macro to micro scale. Materials 10(550), 1–47 (2017)

    Google Scholar 

  29. Wahl, K.J.: Macroscale to microscale tribology-bridging the gap. In: Chung, Y.-W. (ed.) Micro-nanoscale Phenomena in Tribology, pp. 5–21. CRC Press, Boca Raton (2012). ISBN 978-1-4398-3922-5

    Google Scholar 

  30. Fadeev, A.Y., McCarthy, T.J.: Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon. Langmuir 16(18), 7268–7274 (2000)

    CAS  Google Scholar 

  31. Naik, V.V., Crobu, M., Venkataraman, N.V., Spencer, N.D.: Multiple transmission-reflection ir spectroscopy shows that surface hydroxyls play only a minor role in alkylsilane monolayer formation on silica. J. Phys. Chem. Lett. 4, 2745–2751 (2013)

    CAS  Google Scholar 

  32. Gardos, M.N.: Tribological behaviour of polycrystalline and single-crystal silicon. Tribol. Lett. 2, 355–373 (1996)

    CAS  Google Scholar 

  33. Quist, A.P., Pavlovic, E., Oscarsson, S.: Recent advances in microcontact printing. Anal. Bioanal. Chemi. 381(3), 591–600 (2005)

    CAS  Google Scholar 

  34. Kang, S.: Micro/Nano Replication Processes and Applications. Wiley, Hoboken (2012)

    Google Scholar 

  35. Qin, D., Xia, Y., Whitesides, G.M.: Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5(3), 491–502 (2010)

    CAS  Google Scholar 

  36. Bennès, J., Ballandras, S., Chérioux, F.: Easy and versatile functionalization of lithium niobate wafers by hydrophobic trichlorosilanes. Appl. Surf. Sci. 255, 1796–1800 (2008)

    Google Scholar 

  37. Perl, A., Reinhoudt, D.N., Huskens, J.: Microcontact printing: limitations and achievements. Adv. Mater. 21(22), 2257–2268 (2009)

    CAS  Google Scholar 

  38. Arslan, G., Özmen, M., Hatay, I., Gübbük, I.H., Ersöz, M.: Microcontact printing of an alkylsilane monolayer on the surface of glass. Turk. J. Chem. 32, 313–321 (2008). 32:313–321

    CAS  Google Scholar 

  39. Lipomi, D.J., Martinez, R.V., Cademartiri, L., Whitesides, G.M.: Soft lithographic approaches to nanofabrication. Polym. Sci. A Compr. Ref. 7, 211–231 (2012)

    Google Scholar 

  40. Whitesides, G.M., Love, J.C.: The art of building small. Sci. Am. Rep. 17(3), 13–21 (2007)

    Google Scholar 

  41. Belgardt, C., Sowade, E., Blaudeck, T., Baumgärtel, T., Graaf, H., von Borczyskowski, C., Baumann, R.R.: Inkjet printing as a tool for the patterned deposition of octadecylsiloxane monolayers on silicon oxide surfaces. Phys. Chem. Chem. Phys. 15(20), 7494–7504 (2013)

    CAS  Google Scholar 

  42. Johnston, I.D., McCluskey, D.K., Tan, C.K.L., Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014)

    Google Scholar 

  43. Launer, P.J., Arkles, B.: Infrared analysis of organosilicon compunds: spectra-structure correlations. Reprinted from Silicon Compounds: Silanes & Silicones. Gelest, Inc., Morrisville (2013). www.gelest.com, 215-547-1015

  44. Subrahmanyam, A., Suresh Kumar, C.: Kelvin Probe for Surface Engineering. Ane Books Pvt Ltd, New Delhi (2009)

    Google Scholar 

  45. Ermakov, S., Beletskii, A., Eismont, O., Nikolaev, V.: Liquid Crystals in Biotribology. Springer, Cham/Heidelberg/New York/Dordrecht/London (2016)

    Google Scholar 

  46. Szwajca, A., Wei, J., Schukfeh, M.I., Tornow, M.: Self-assembled monolayers of alkyl-thiols on InAs: a Kelvin probe force microscopy study. Surf. Sci. 633, 53–59 (2015)

    CAS  Google Scholar 

  47. Rossi, F.: Contact potential measurement: apacing-dependence errors. Rev. Sci. Instrum. 63(9), 4174–4181 (1992)

    Google Scholar 

  48. di Natale, C., Goletti, C., Paolesse, R., Drago, M., Macagnano, A., Mantini, A., Troitsky, V.I., Berzina, T.S., Cocco, M., D’Amico, A.: Kelvin probe investigation of the thickness effects in Langmuir–Blodgett films of pyrrolic macrocycles sensitive to volatile compounds in gas phase. Sens. Actuators B 57(1–3), 183–187 (1999)

    Google Scholar 

  49. Alloway, M., Hofmann, M., Smith, D.L., Gruhn, N.E., Graham, A.L., Colorado, R., Wysocki, V.H., Lee, T.R., Lee, P.A., Armstrong, N.R.: Interface dipoles arising from self-assembled monolayers on gold: UV-photoemissionstudies of alkanethiols and partially fluorinated alkanethiols. J. Phys. Chem. B 107, 11690–11699 (2003)

    CAS  Google Scholar 

  50. Evans, S.D., Ulman, A.: Surface potential studies of alkyl-thiol monolayers adsorbed on gold. Chem. Phys. Lett. 170(5,6), 462 (1990)

    CAS  Google Scholar 

  51. Lü, J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E., Güntherodt, H.-J.: Kelvin probe force microscopy on surfaces: investigation of the surface potential of self-assembled monolayers on gold. Langmuir 15, 8184–8188 (1999)

    Google Scholar 

  52. Heinz, H., Vaia, R.A., Farmer, B.L.: Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces. Langmuir 24, 3727–3733 (2008)

    CAS  Google Scholar 

  53. Ito, E., Arai, T., Hara, M., Noh, J.: Surface potential change depending on molecular orientation of hexadecanethiol self-assembled monolayers on Au(111). Bull. Korean Chem. Soc. 30(6), 1309–1312 (2009)

    CAS  Google Scholar 

  54. Kasai, T., Fu, X.Y., Rigney, D.A., Zharin, A.L.: Applications of a non-contacting Kelvin probe during sliding. Wear 225–229, 1186–1204 (1999)

    Google Scholar 

  55. Li, Y., Li, D.Y.: Prediction of elastic-contact friction of transition metals under light loads based on their electron work functions. J. Phys. D: Appl. Phys. 40, 5980–5983 (2007)

    CAS  Google Scholar 

  56. Stempflé, P., Pantalé, O., Djilali, T., Kouitat Njiwa, R., Bourrat, X., Takadoum, J.: Evaluation of the real contact area in three-body dry friction by micro-thermal analysis. Tribol. Int. 43, 1794–1805 (2010)

    Google Scholar 

  57. Chandekar, A., Sengupta, S.K., Whitten, J.E.: Thermal stability of thiol and silane monolayers: a comparative study. Appl. Surf. Sci. 256, 2742–2749 (2010)

    CAS  Google Scholar 

  58. Khatri, O.P., Biswas, S.K.: Thermal stability of octadecyltrichlorosilane self-assembled on a polycrystalline aluminium surface. Surf. Sci. 572, 228–238 (2004)

    CAS  Google Scholar 

  59. Kluth, G.J., Sander, M., Sung, M.M., Maboudian, R.: Study of the desorption mechanism of alkylsiloxane self-assembled monolayers through isotopic labeling and high resolution electron energy-loss spectroscopy experiments. J. Vac. Sci. Technol. A 16(3), 932–936 (1998)

    CAS  Google Scholar 

  60. te Riet, J., Smit, T., Gerritsen, J.W., Cambi, A., Elemans, J.A.A.W., Figdor, C.G., Speller, S.: Molecular friction as a tool to identify functionalized alkanethiols. Langmuir 26(9), 6357–6366 (2010)

    Google Scholar 

  61. Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17(6), 1970–1974 (2001)

    CAS  Google Scholar 

  62. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41, 123001 (2008)

    Google Scholar 

  63. Munz, M.: Force calibration in lateral force microscopy: a review of the experimental methods. J. Phys. D: Appl. Phys. 43, 063001 (2010)

    Google Scholar 

  64. Meyer, E., Lüthi, R., Howald, L., Bammerlin, M., Guggisberg, M., Günterodt, H.J., Scandella, L., Gobrecht, J., Schumacher, A., Prins, R.: Physics of sliding friction. In: Persson, B.N.J., Tosatti, E. (eds.) Friction Force Spectroscopy, pp. 349–367. Kluwer Academic Publishers, Berlin (1996)

    Google Scholar 

  65. Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34(1–3), 1–104 (1999)

    CAS  Google Scholar 

  66. Stempflé, P., Takadoum, J.: Multi-asperity nanotribological behavior of single-crystal silicon: crystallography-induced anisotropy in friction and wear. Tribol. Int 48, 35–43 (2012)

    Google Scholar 

  67. Stempflé, P., Domatti, A., Carriere, P., Takadoum, J.: Lifespan enhancement of Silicon based MEMS using periodic nano-patterned self-assembled monolayers. In: Proceedings of the 7th European Conference on Tribology—ECOTRIB 2019, Vienna, pp. 12–14 (2019)

  68. www.osram-os.com, OSRAM Opto Semi-conductors Technical chart, SFH 4725S (Version 1.7, 2018-10-09)

  69. Popov, V.L., HeB, M., Willert, E.: Handbook of Contact Mechanics. Springer, New York (2019)

    Google Scholar 

  70. Barna, P.: Fundamental of the Infrared Physical Layer, Microchip Application Note AN 243 (2004) Microchip Technology Inc, DS00243A, pp. 1-12

  71. Palik, D.: Handbook of Optical Constants of Solids. Academic Press, Boston (1985)

    Google Scholar 

  72. Hénot, M., Grzelka, M., Zhang, J., Mariot, S., Antoniuk, I., Drockenmuller, E., Léger, L., Restagno, F.: Temperature-controlled slip of polymer melts on ideal substrates. Phys. Rev. Lett. 121, 177802 (2018)

    Google Scholar 

  73. Penskiy, I., Gerratt, A.P., Bergbreiter, S.: Friction adhesion and wear properties of PDMS films on silicon sidewalls. J. Micromech. Microeng. 21, 105013 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Stempflé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stempflé, P., Domatti, A., Takadoum, J. et al. Thermal-Controlled Frictional Behaviour of Nanopatterned Self-assembled Monolayers as Triboactive Surfaces. Tribol Lett 68, 55 (2020). https://doi.org/10.1007/s11249-020-01291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01291-z

Keywords

Navigation