Skip to main content
Log in

An EBSD Investigation on the Evolution of the Surface Microstructure of D2 Wheel Steel During Rolling Contact Fatigue

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, the relationship between rolling contact fatigue (RCF) failure and the microstructure of D2 wheel steel was studied using a GPM-30 fatigue tester under oil lubrication conditions. The microstructural evolution during the RCF process can be divided into three stages: In the first stage, the misorientation of the proeutectoid ferrite is 2°–10°, the ferrite phase in pearlite is less than 2°, and the dislocation density is low. In the second stage, with the increase in cycles, the misorientation of the proeutectoid ferrite increases to more than 10°, and the ferrite phase in pearlite increases to 2°–10°. In the third stage, the misorientation of the ferrite phase in pearlite increases to more than 10°, the ferrite phase is divided into fine grains, and the dislocation density is high. RCF cracks are formed in the third stage. Crack initiation is ascribed to the refinement of the surface ferrite phase and proeutectoid ferrite and the increase in dislocation density. RCF cracks are initiated and propagate primarily at the interface of pearlite/proeutectoid ferrite and in proeutectoid ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ekberg, A., Kabo, E.: Fatigue of railway wheels and rails under rolling contact and thermal loading: an overview. Wear 258, 1288–1300 (2005)

    Article  CAS  Google Scholar 

  2. Bevan, A., Molyneux-Berry, P., Eickhoff, B., Burstow, M.: Development and validation of a wheel wear and rolling contact fatigue damage model. Wear 307, 100–111 (2013)

    Article  CAS  Google Scholar 

  3. Makino, T., Kato, T., Hirakawa, K.: The effect of slip ratio on the rolling contact fatigue property of railway wheel steel. Int. J. Fatigue. 36, 68–79 (2012)

    Article  CAS  Google Scholar 

  4. Seo, J.W., Jun, H.K., Kwon, S.J., Lee, D.H.: Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact. Int. J. Fatigue. 83, 184–194 (2016)

    Article  CAS  Google Scholar 

  5. Tatsumi, K., Mineyasu, T., Minoru, H.: Development of SP3 rail with high wear resistance and rolling contact fatigue resistance for heavy haul railway. JFE. Technol. Rep. 16, 32–37 (2011)

    Google Scholar 

  6. Kapoor, A., Franklin, F., Wong, S.K., Ishida, M.: Surface roughness and plastic flow in rail wheel contact. Wear 253, 257–264 (2002)

    Article  CAS  Google Scholar 

  7. Masoumi, M., Ariza, E.A., Sinatora, A., Goldenstein, H.: Role of crystallographic orientation and grain boundaries in fatigue crack propagation in used pearlitic rail steel. Mater. Sci. Eng. A. 722, 147–155 (2018)

    Article  CAS  Google Scholar 

  8. Hu, Y., Su, C.R., Guo, L.C., Liu, Q.Y., Guo, J., Zhou, Z.R., Wang, W.J.: Effect of rolling direction on microstructure evolution of CL60 wheel steel. Wear 424–425, 203–215 (2019)

    Article  Google Scholar 

  9. Lv, B., Zhang, M., Zhang, F.C., Zheng, C.L., Feng, X.Y., Qian, L.H., Qin, X.B.: Micro-mechanism of rolling contact fatigue in Hadfield steel crossing. Int. J. Fatigue. 44, 273–278 (2012)

    Article  CAS  Google Scholar 

  10. Santa, J.F., Cuervo, P., Christoforou, P., Harmon, M., Beagles, A., Toro, A., Lewis, R.: Twin disc assessment of wear regime transitions and rolling contact fatigue in R400HT-E8 pairs. Wear 432–433, 102916 (2019)

    Article  Google Scholar 

  11. Li, Q., Guo, J., Zhao, A.M.: Effect of upper bainite on wear behavior of high-speed wheel steel. Tribol. Lett. 67, 121 (2019)

    Article  CAS  Google Scholar 

  12. Hardwick, C., Lewis, R., Stock, R.: The effects of friction management materials on rail with pre-existing RCF surface damage. Wear 384, 50–60 (2017)

    Article  Google Scholar 

  13. Wang, S.S., Zhao, X.J., Liu, P.T., Pan, J.Z., Chen, C.H., Ren, R.M.: Investigation of the relation between rolling contact fatigue property and microstructure on the surface layer of D2 wheel steel. Mater. Sci. Appl. 10, 18 (2019)

    Google Scholar 

  14. Ministry of Industry: Ministry of industry and information technology of the People's Republic of China. YB/T5345-2014, pp. 1–23. Rolling contact fatigue test method for metal materials. Metallurgical Industry Press, Beijing (2014)

    Google Scholar 

  15. Linz, M., Cihak-Bayr, U., Trausmuth, A., Scheriau, S., Künstner, D., Badisch, E.: EBSD study of early-damaging phenomena in wheel–rail model test. Wear 342–343, 13–21 (2015)

    Article  Google Scholar 

  16. Kubin, L.P., Mortensen, A.: Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mater. 48, 119–125 (2003)

    Article  CAS  Google Scholar 

  17. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I Theory. J. Mech. Phys. Solids. 47, 1239–1263 (1999)

    Article  Google Scholar 

  18. Izotov, V.I., Pozdnyakov, V.A., Lukyanenko, E.V., Yu, O., Sanova, U., Filippov, G.A.: Influence of the pearlite fineness on the mechanical properties, deformation behavior, and fracture characteristics of carbon steel. Phys. Met. Metallogr. 103, 519–529 (2007)

    Article  Google Scholar 

  19. Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., Lu, K.: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603–4616 (2002)

    Article  CAS  Google Scholar 

  20. Petch, N.: The cleavage strength of polycrystals. Iron Steel Inst. 174, 25–28 (1953)

    CAS  Google Scholar 

  21. Busby, J.T., Hash, M.C., Was, G.S.: The relationship between hardness and yield stress in irradiated austenitic and ferrite steels. J. Nucl. Mater. 336, 267–278 (2005)

    Article  CAS  Google Scholar 

  22. Liu, C.M., Wang, J.J., Lin, R.R., Cui, W.F., Bai, Y.G.: Role of small amounts of carbon in fine grain strengthening of steels. Mater. Sci. Technol. 9, 301–304 (2001). (Chinese)

    CAS  Google Scholar 

  23. Li, Q., Zhang, C., Chen, H., Chen, H., Yang, Z.G.: Microstructural evolution of a hypoeutectoid pearlite steel under rolling-sliding contact loading. J. Iron. Steel. Res. Int. 23, 1054–1060 (2016)

    Article  Google Scholar 

  24. Garnham, J.E., Davis, C.L.: The role of deformed rail microstructure on rolling contact fatigue initiation. Wear 265, 1363–1372 (2008)

    Article  CAS  Google Scholar 

  25. Urashima, C., Nishida, S.: Fatigue crack initiation and propagation behavior in pearlite structures, Fatigue'96. Sixth Int. Fatigue Congr. 1, 319–324 (1996)

    Google Scholar 

  26. Lu, K.: Marking strong nanomaterials ductile with gradients. Science 345, 1455–1456 (2014)

    Article  CAS  Google Scholar 

  27. Eden, H.C., Garnham, J.E., Davis, C.L.: Influential microstructural changes on rolling contact fatigue crack initiation in pearlitic rail steels. Mater. Sci. Technol. 21, 623–629 (2005)

    Article  CAS  Google Scholar 

  28. Knothe, K., Liebelt, S.: Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear 189, 91–99 (1995)

    Article  CAS  Google Scholar 

  29. Franklin, F.J., Kapoor, A.: Modeling wear and crack initiation in rails. Proc. Inst. Mech. Eng. F 221, 23–33 (2007)

    Article  Google Scholar 

  30. Fletcher, D.I., Hyde, P., Kappor, A.: Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks. Wear 265, 1317–1324 (2008)

    Article  CAS  Google Scholar 

  31. Bogdanski, S., Olzak, M., Stupnicki, J.: Numerical stress analysis of rail rolling contact fatigue cracks. Wear 191, 14–24 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Basic Research Program of China (No. 2015CB654802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-huan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Cp., Ren, Rm., Liu, Dy. et al. An EBSD Investigation on the Evolution of the Surface Microstructure of D2 Wheel Steel During Rolling Contact Fatigue. Tribol Lett 68, 47 (2020). https://doi.org/10.1007/s11249-020-1277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-1277-1

Keywords

Navigation