Skip to main content
Log in

In-Situ Formation of MoS2 and WS2 Tribofilms by the Synergy Between Transition Metal Oxide Nanoparticles and Sulphur-Containing Oil Additives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This works investigates the in-situ formation of MoS2 and WS2 tribofilms by the synergy between transition metal oxide nanoparticles and conventional sulphur-containing anti-wear and extreme pressure additives. The formation of these low friction tribofilms can be obtained under reciprocating sliding contact and under extreme pressure conditions, as evidenced using X-ray photoelectron spectroscopy. Under reciprocating sliding conditions, the synergy between transition metal oxide nanoparticles and the ZDDP leads to coefficients of friction around 0.06 before they rise as consequence of oxidation. The synergy is more outstanding in extreme pressure conditions, particularly for MoO3 nanotubes combined with extreme pressure additive. This combination outperforms base oil mixtures containing EP additive or MoS2 nanotubes. While MoS2 nanotubes build superb extreme pressure tribofilms containing iron and molybdenum oxides and sulphides, MoO3 nanotubes are able to build similar tribofilms that can continuously re-sulphurize in the presence of the extreme pressure additive. Despite having a similar chemistry, MoO3 nanotubes are observed to sulphurize more easily when compared to WO3 nanoparticles. The work highlights the tribological potential of these nanoparticles otherwise typically used as precursors for the synthesis of transition metal dichalcogenide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gibney, E.: 2D or not 2D? Nature 522, 274–276 (2015)

    Article  CAS  Google Scholar 

  2. Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

    Article  CAS  Google Scholar 

  3. Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  CAS  Google Scholar 

  4. Margulis, L., Salitra, G., Tenne, R., Talianker, M.: Nested fullerene-like structures. Nature 365, 113–114 (1993)

    Article  CAS  Google Scholar 

  5. Remškar, M., Škraba, Z., Regula, M., Ballif, C., Sanjinés, R., Lévy, F.: New crystal structures of WS2: microtubes, ribbons, and ropes. Adv. Mater. 10, 246–249 (1998)

    Article  Google Scholar 

  6. Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhács, A., Tremel, W.: Understanding the tribochemical mechanisms of IF-MoS 2 nanoparticles under boundary lubrication. Tribol. Lett. 41, 55–64 (2011)

    Article  CAS  Google Scholar 

  7. Kalin, M., Kogovšek, J., Remškar, M.: Nanoparticles as novel lubricating additives in a green, physically based lubrication technology for DLC coatings. Wear 303, 480–485 (2013)

    Article  CAS  Google Scholar 

  8. Niste, V.B., Ratoi, M.: Tungsten dichalcogenide lubricant nanoadditives for demanding applications. Mater. Today Commun. 8, 1–11 (2016)

    Article  CAS  Google Scholar 

  9. Tomala, A., Vengudusamy, B., Rodríguez Ripoll, M., Naveira Suarez, A., Remškar, M., Rosentsveig, R.: Interaction between selected MoS2 nanoparticles and ZDDP tribofilms. Tribol. Lett. 59, 1–18 (2015)

    Article  CAS  Google Scholar 

  10. Chen, Z., Liu, X., Liu, Y., Gunsel, S., Luo, J.: Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants. Sci. Rep. 5, 12869 (2015)

    Article  CAS  Google Scholar 

  11. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  CAS  Google Scholar 

  12. Jelenc, J., Remskar, M.: Friction on a single MoS2 nanotube. Nanoscale Res. Lett. 7, 208 (2012)

    Article  Google Scholar 

  13. Aldana, P.U., Vacher, B., Le Mogne, T., Belin, M., Thiebaut, B., Dassenoy, F.: Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime. Tribol. Lett. 56, 249–258 (2014)

    Article  CAS  Google Scholar 

  14. Aldana, P.U., Dassenoy, F., Vacher, B., Le Mogne, T., Thiebaut, B.: WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive. Tribol. Int. 102, 213–221 (2016)

    Article  CAS  Google Scholar 

  15. Tomala, A., Rodríguez Ripoll, M., Gabler, C., Remškar, M., Kalin, M.: Interactions between MoS2 nanotubes and conventional additives in model oils. Tribol. Int. 110, 140–150 (2017)

    Article  CAS  Google Scholar 

  16. Tomala, A., Rodríguez Ripoll, M., Kogovšek, J., Kalin, M., Bednarska, A., Michalczewski, R., Szczerek, M.: Synergisms and antagonisms between MoS2 nanotubes and representative oil additives under various contact conditions. Tribol. Int. 129, 137–150 (2019)

    Article  CAS  Google Scholar 

  17. Rabaso, P., Dassenoy, F., Ville, F., Diaby, M., Vacher, B., Le Mogne, T., Belin, M., Cavoret, J.: An investigation on the reduced ability of IF-MoS2 nanoparticles to reduce friction and wear in the presence of dispersants. Tribol. Lett. 55, 503–516 (2014)

    Article  CAS  Google Scholar 

  18. Ratoi, M., Niste, V.B., Walker, J., Zekonyte, J.: Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribol. Lett. 52, 81–91 (2013)

    Article  CAS  Google Scholar 

  19. Orofeo, C.M., Suzuki, S., Sekine, Y., Hibino, H.: Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl. Phys. Lett. 105, 083112 (2014)

    Article  Google Scholar 

  20. Morrish, R., Haak, T., Wolden, C.A.: Low-Temperature synthesis of n-type WS 2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 26, 3986–3992 (2014)

    Article  CAS  Google Scholar 

  21. Kong, D., Wang, H., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., Cui, Y.: Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013)

    Article  CAS  Google Scholar 

  22. He, Z., Que, W.: Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today. 3, 23–56 (2016)

    Article  Google Scholar 

  23. Remškar, M., Viršek, M., Mrzel, A.: The MoS2 nanotube hybrids. Appl. Phys. Lett. 95, 2–4 (2009)

    Article  Google Scholar 

  24. Leonard-Deepak, F., Castro-Guerrero, C.F., Mejía-Rosales, S., José-Yacamán, M.: Structural transformation of tungsten oxide nanourchins into IF–WS2 nanoparticles: an aberration corrected STEM study. Nanoscale 3, 5076 (2011)

    Article  CAS  Google Scholar 

  25. Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater. Sci. Eng. A 374, 390–397 (2004)

    Article  Google Scholar 

  26. Ratoi, M., Niste, V.B., Zekonyte, J.: WS2 nanoparticles—potential replacement for ZDDP and friction modifier additives. RSC Adv. 4, 21238 (2014)

    Article  CAS  Google Scholar 

  27. Rodríguez Ripoll, M., Tomala, A., Gabler, C., Dražić, G., Pirker, L., Remškar, M.: In situ tribochemical sulfurization of molybdenum oxide nanotubes. Nanoscale. 10, 3281–3290 (2018)

    Article  Google Scholar 

  28. Remskar, M., Mrzel, A., Virsek, M., Godec, M., Krause, M., Kolitsch, A., Singh, A., Seabaugh, A.: The MoS2 nanotubes with defect-controlled electric properties. Nanoscale Res. Lett. 6, 26 (2010)

    Google Scholar 

  29. Varlec, A., Arčon, D., Škapin, S.D., Remškar, M.: Oxygen deficiency in MoO3 polycrystalline nanowires and nanotubes. Mater. Chem. Phys. 170, 154–161 (2016)

    Article  CAS  Google Scholar 

  30. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions in boundary lubrication—the effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39, 1545–1557 (2006)

    Article  CAS  Google Scholar 

  31. Kohlhauser, B., Rodríguez Ripoll, M., Riedl, Koller, C.M., Koutna, N., Amsüss, A., Hutter, H., Ramirez, G., Gachot, C., Erdemir, A., Mayrhofer, P.H.: How to get noWear? – A new take on the design of in-situ formed high performing low-friction tribofilms. Mater. Des. (2020) (in press)

Download references

Acknowledgements

This work was funded by the Austrian COMET Programme (Project K2 XTribology. No. 849109) and carried out at the “Excellence Centre of Tribology”. This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 665778. The author A. Tomala acknowledges the POLONEZ Project by National Science Centre, Poland under fellowship registration number 2015/19/P/ST8/02597. The authors would like to acknowledge Dr. C. Gabler and Dr. C. Tomastik for performing the XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Rodríguez Ripoll.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Ripoll, M., Tomala, A.M., Pirker, L. et al. In-Situ Formation of MoS2 and WS2 Tribofilms by the Synergy Between Transition Metal Oxide Nanoparticles and Sulphur-Containing Oil Additives. Tribol Lett 68, 41 (2020). https://doi.org/10.1007/s11249-020-1286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-1286-0

Keywords

Navigation