Skip to main content
Log in

The performance of three-intensity decoy-state measurement-device-independent quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The performance of measurement-device-independent quantum key distribution (MDI-QKD) with three-intensity decoy-state is completely analyzed. The statistical fluctuation based on the central limit theorem is also considered both in symmetric and asymmetric cases. Our simulation results show that in the MDI-QKD system, the choice of the decoy state intensities is more important than the choice of the signal state. More significantly, the ratio between Alice’s signal state optimal intensities and decoy state is well approximately equal to Bob’s in the asymmetric case. These results can be used to optimize the practical quantum communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 560, 7 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  4. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  5. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  6. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595 (2014)

    Article  ADS  Google Scholar 

  7. Diamanti, E., Lo, H.-K., Yuan, Z.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016)

    Article  Google Scholar 

  8. Brassard, L., Mor, Sanders: Limitations on Practical Quantum Cryptography. Phys. Rev. Lett. 85, 6 (2000)

    Article  Google Scholar 

  9. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686 (2010)

    Article  ADS  Google Scholar 

  10. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 5 (2003)

    Article  Google Scholar 

  11. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  12. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  13. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  14. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    Article  ADS  Google Scholar 

  15. Wang, Q., Zhou, X.-Y., Guo, G.-C.: Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources. Sci. Rep. 6, 35394 (2016)

    Article  ADS  Google Scholar 

  16. Jiang, C., Yu, Z.-W., Wang, X.-B.: Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A 94, 062323 (2016)

    Article  ADS  Google Scholar 

  17. Comandar, L.C., Lucamarini, M., Fröhlich, B., et al.: Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photon. 10, 312 (2016)

    Article  ADS  Google Scholar 

  18. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  19. Wang, C., Yin, Z.-Q., Wang, S., et al.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016 (2017)

    Article  ADS  Google Scholar 

  20. Wang, X.-B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  21. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133 (2005)

    Article  MathSciNet  Google Scholar 

  22. Xu, F., Curty, M., Qi, B., Lo, H.-K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013)

    Article  ADS  Google Scholar 

  23. Ma, X., Fung, C.-H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  24. Yu, Z.-W., Zhou, Y.-H., Wang, X.-B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)

    Article  ADS  Google Scholar 

  25. Mao, C.-C., Zhou, X.-Y., Zhou, J.-R., et al.: Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method. Opt. Express 26, 13289 (2018)

    Article  ADS  Google Scholar 

  26. Jiang, C., Yu, Z.-W., Wang, X.-B.: Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation. Phys. Rev. A 95, 032325 (2017)

    Article  ADS  Google Scholar 

  27. Trushechkin, A.S., Kiktenko, E.O., Fedorov, A.K.: Practical issues in decoy-state quantum key distribution based on the central limit theorem. Phys. Rev. A 96, 022316 (2017)

    Article  ADS  Google Scholar 

  28. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  29. Rubenok, A., Slater, J.A., Chan, P., et al.: Real-World Two-Photon Interference and Proof-of-Principle Quantum Key Distribution Immune to Detector Attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  30. Hu, X.-L., Cao, Y., Yu, Z.-W., Wang, X.-B.: Measurement-device-independent quantum key distribution over asymmetric channel and unstable channel. Sci. Rep. 8, 17634 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61571060), Ministry of Science and Technology of China (Grant No. 2016YFA0301300) and Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongzhen Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Xue, Q. & Jiao, R. The performance of three-intensity decoy-state measurement-device-independent quantum key distribution. Quantum Inf Process 19, 165 (2020). https://doi.org/10.1007/s11128-020-02666-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02666-w

Keywords

Navigation