Skip to main content
Log in

Quantum image processing: the pros and cons of the techniques for the internal representation of the image. A reply to: A comment on “Quantum image processing?”

  • Reply to Comment
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

The Original Article was published on 30 March 2020

Abstract

This work demonstrates the practical infeasibility in the implementation of the techniques known as flexible representation of quantum images (and its variants) and novel enhanced quantum representation of digital images (and its variants). Besides, the implementation of the technique known as quantum Boolean image processing has proven to be extremely successful on: (a) the four main quantum simulators on the cloud, (b) two physical quantum computers, and (c) three optical tables where it also demonstrated: its resource economy and its great robustness (immunity to noise), among other advantages, in fact, without any exceptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data accessibility

The experimental data that support the findings of this study are available in: https://www.researchgate.net/publication/336231930_Data_accessibillity_of_paper_QINP-D-19-00212.

References

  1. Mastriani, M.: Quantum Boolean image denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  3. Zhang, Y., Lu, L., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mastriani, M.: Quantum image processing? Quantum Inf. Process. 16, 27 (2017)

    Article  ADS  Google Scholar 

  5. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)

    Article  ADS  Google Scholar 

  6. Li, H.-S., Fan, P., Xia, H.-Y., Zhou, R.-G.: A comment on “Quantum image processing?” Quantum Inf Process (2019)

  7. https://www.mathworks.com/

  8. https://rigetti.com/qcs

  9. Busch, P., Lahti, P., Pellonpää, J.P., Ylinen, K.: Quantum Measurement. Springer, New York (2016)

    Book  Google Scholar 

  10. Hohenberg, P.C.: Colloquium: an introduction to consistent quantum theory. Rev. Mod. Phys. 82(4), 2835–2844 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. https://quantumexperience.ng.bluemix.net/qx/experience

  12. Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley-VCH, Weinheim (2011)

    Book  Google Scholar 

  13. https://algassert.com/quirk

  14. Wang, D., Liu, Z.H., Zhu, W.N., Li, S.Z.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302306 (2012)

    Google Scholar 

  15. Hietala, K., Rand, R., Hung, S-H., Wu, X., Hicks, M., Verified Optimization in a Quantum Intermediate Representation. arXiv:cs.LO/1904.06319v3 (2019)

  16. https://quantum-circuit.com/

  17. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  18. Jain, A.K.: Fundamentals of Digital Image Processing, 1st edn. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks to the board of directors of Qubit Reset Labs for all their support.

Funding

The author acknowledges funding by Qubit Reset Labs under contract QComm-01#10/28/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Mastriani.

Ethics declarations

Competing interests

The author declares that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Considering Eqs. (1, 2, and 4) of Sect. 3, if we call \( \left| {f_{i} } \right\rangle \) to \( \cos \theta_{i} \left| 0 \right\rangle + \sin \theta_{i} \left| 1 \right\rangle \), we will have,

$$ \left| {f_{i} } \right\rangle = \cos \theta_{i} \left| 0 \right\rangle + \sin \theta_{i} \left| 1 \right\rangle = \cos \theta_{i} \left[ {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \right] + \sin \theta_{i} \left[ {\begin{array}{*{20}c} 0 \\ 1 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\cos \theta_{i} } \\ {\sin \theta_{i} } \\ \end{array} } \right] , $$
(22)

where the respective density matrices for each CBS \( \left| 0 \right\rangle \), and \( \left| 1 \right\rangle \) will be,

$$ M_{\left| 0 \right\rangle } = \left| 0 \right\rangle \left\langle 0 \right| = \left[ {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 1 & 0 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right] , {\text{ and}} $$
(23)
$$ M_{\left| 1 \right\rangle } = \left| 1 \right\rangle \left\langle 1 \right| = \left[ {\begin{array}{*{20}c} 0 \\ 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 & 1 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right] . $$
(24)

Therefore, applying projective measurement on \( \left| {f_{i} } \right\rangle \), the impact of quantum measurement [9] on FRQI is evidenced,

$$ \begin{aligned} \left| {f_{i,\left| 0 \right\rangle } } \right\rangle_{pm} & = \frac{{M_{\left| 0 \right\rangle } \left| {f_{i} } \right\rangle }}{{\sqrt {\left\langle {f_{i} } \right|M_{\left| 0 \right\rangle } M_{\left| 0 \right\rangle } \left| {f_{i} } \right\rangle } }} \\ & = \frac{{\left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } \\ {\sin \theta_{i} } \\ \end{array} } \right]}}{{\sqrt {\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } & {\sin \theta_{i} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } \\ {\sin \theta_{i} } \\ \end{array} } \right]} }} = \frac{{\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } \\ 0 \\ \end{array} } \right]}}{{\sqrt {\cos^{2} \theta_{i} } }} = \frac{{\cos \theta_{i} }}{{\left| {\cos \theta_{i} } \right|}}\left[ {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \right] = \left| 0 \right\rangle , \\ \end{aligned} $$
(25)
$$ \begin{aligned} \left| {f_{i,\left| 1 \right\rangle } } \right\rangle_{pm} & = \frac{{M_{\left| 1 \right\rangle } \left| {f_{i} } \right\rangle }}{{\sqrt {\left\langle {f_{i} } \right|M_{\left| 1 \right\rangle } M_{\left| 1 \right\rangle } \left| {f_{i} } \right\rangle } }} \\ & = \frac{{\left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } \\ {\sin \theta_{i} } \\ \end{array} } \right]}}{{\sqrt {\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } & {\sin \theta_{i} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\cos \theta_{i} } \\ {\sin \theta_{i} } \\ \end{array} } \right]} }} = \frac{{\left[ {\begin{array}{*{20}c} 0 \\ {\sin \theta_{i} } \\ \end{array} } \right]}}{{\sqrt {sin^{2} \theta_{i} } }} = \frac{{\sin \theta_{i} }}{{\left| {\sin \theta_{i} } \right|}}\left[ {\begin{array}{*{20}c} 0 \\ 1 \\ \end{array} } \right] = \left| 1 \right\rangle . \\ \end{aligned} $$
(26)

That is to say, Eqs. (25) and (26) highlight the devastating effect of quantum measurement [9] on FRQI, which had already been set out in an earlier paper [4]. In this case, since FRQI encodes the colors by means of states such as those of Eq. (22), then Eqs. (25) and (26) show that the quantum measurement completely eliminates the color information of the image coded in \( \left| {f_{i} } \right\rangle \), which it represents a factor of central importance into FRQI.

Appendix 2

We can use the first part of the superdense coding protocol [15] as Cl2Qu interface, Fig. 12, while as Qu2Cl interface its last part, that is, the quantum measurement along the z-axis of the Bloch’s sphere.

Fig. 12
figure 12

Example of a possible pair of Cl2Qu and Qu2Cl interfaces for QuBoIP extracted from the superdense coding protocol, where \( \left| {b_{1} } \right\rangle \) and \( \left| {b_{2} } \right\rangle \) are the CBS version of the classic bits b1 and b2, respectively

Although Fig. 12 is not the most efficient option of Cl2Qu interface since one EPR pair must be prepared for each pair of bits to be transformed into their respective CBS, however, it is surely the most pedagogical, where: \( \left| {\beta_{{b_{1} b_{2} }} } \right\rangle = {1 \mathord{\left/ {\vphantom {1 {\sqrt 2 }}} \right. \kern-0pt} {\sqrt 2 }}\left( {\left| {b_{1} b_{2} } \right\rangle + \left( { - 1} \right)^{{b_{2} }} \left| {\overline{b}_{1} \overline{b}_{2} } \right\rangle } \right) \), while \( \sigma_{x} \) and \( \sigma_{z} \) are Pauli’s matrices.

The complete details of its operation can be obtained in data accessibility. The computational cost of QuBoIP is then that of the chosen Cl2Qu interface. The only case in which all bitplanes of the original image should be used is when we must invert the colors of such image. Below, we show just two of the countless examples of successful implementation of QuBoIP on a quantum platform with free access in the cloud. We chose Quirk [13] for being the most pedagogical, with an excellent drag-and-drop graphic interface. Similar implementations made on other platforms such as IBM Q [11], Rigetti [8], and Quantum Programming Studio [16] can be seen in data accessibility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastriani, M. Quantum image processing: the pros and cons of the techniques for the internal representation of the image. A reply to: A comment on “Quantum image processing?”. Quantum Inf Process 19, 156 (2020). https://doi.org/10.1007/s11128-020-02653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02653-1

Keywords

Navigation