Skip to main content
Log in

Error correction schemes for fully correlated quantum channels protecting both quantum and classical information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study efficient quantum error correction schemes for the fully correlated channel on an n-qubit system with error operators that assume the form \(\sigma _x^{\otimes n}\), \(\sigma _y^{\otimes n}\), \(\sigma _z^{\otimes n}\). Previous schemes are improved to facilitate implementation. In particular, when n is odd and equals \(2k+1\), we describe a quantum error correction scheme using one arbitrary qubit \(\sigma \) to protect the data state \(\rho \) in a 2k-qubit system. The encoding operation \(\sigma \otimes \rho \mapsto \Phi (\sigma \otimes \rho )\) only requires 3k CNOT gates (each with one control bit and one target bit). After the encoded state \(\Phi (\sigma \otimes \rho )\) goes through the channel, we can apply the inverse operation \(\Phi ^{-1}\) to produce \({\tilde{\sigma }} \otimes \rho \) so that a partial trace operation can recover \(\rho \). When n is even and equals \(2k+2\), we describe a hybrid quantum error correction scheme using any one of the two classical bits \(\sigma \in \{|ij{\rangle }{\langle }ij|: i, j \in \{0,1\}\}\) to protect a 2k-qubit state \(\rho \) and two classical bits. The encoding operation \(\sigma \otimes \rho \mapsto \Phi (\sigma \otimes \rho )\) can be done by \(3k+2\) CNOT gates and a single-qubit Hadamard gate. After the encoded state \(\Phi (\sigma \otimes \rho )\) goes through the channel, we can apply the inverse operation \(\Phi ^{-1}\) to produce \(\sigma \otimes \rho \) so that a perfect protection of the two classical bits \(\sigma \) and the 2k-qubit state is achieved. If one uses an arbitrary two-qubit state \(\sigma \), the same scheme will protect 2k-qubit states. The scheme was implemented using MATLAB, Mathematica, Python and the IBM’s quantum computing framework qiskit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., BenHaim, Y., Bucher, D., Cabrera-Hernadez, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Corcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., Gonzalez, S.D.L.P., Torre, E.D.L., Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok, Ł., Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi- Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martin-Fernandez, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodriguez, D.M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Perez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C., Wood, S., Worner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: an open-source framework for quantum computing (2019)

  2. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  Google Scholar 

  3. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Grassl, M., Lu, S., Zeng, B.: Codes for simultaneous transmission of quantum and classical information. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1718–1722 (2017)

  5. Hsieh, M.H., Wilde, M.M.: Entanglement-assisted communication of classical and quantum information. IEEE Trans. Inf. Theory 56(9), 4682–4704 (2010)

    Article  MathSciNet  Google Scholar 

  6. Hsieh, M.H., Wilde, M.M.: Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans. Inf. Theory 56(9), 4705–4730 (2010)

    Article  MathSciNet  Google Scholar 

  7. https://www.research.ibm.com/ibm-q/technology/devices/

  8. Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kondo, Y., Bagnasco, C., Nakahara, M.: Implementation of a simple operator-quantum-error-correction scheme. Phys. Rev. A 88, 022314 (2013)

    Article  ADS  Google Scholar 

  10. Kribs, D.W., Laflamme, R., Poulin, D., Lesosky, M.: Operator quantum error correction. Quantum Inf. Comput. 6, 383–399 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S., Tomita, H.: Efficient quantum error correction for fully correlated noise. Phys. Lett. A 375, 3255–3258 (2011)

    Article  ADS  Google Scholar 

  12. Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S., Tomita, H.: Recovery in quantum error correction for general noise without measurement. Quantum Inf. Comput. 12, 149–158 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Müller, M., Rivas, A., Martínez, E.A., Nigg, D., Schindler, P., Mnz, T., Blatt, R., Martin-Delgado, M.A.: Iterative phase optimization of elementary quantum error correcting codes. Phys. Rev. X 6, 031030 (2016)

    Google Scholar 

  14. Nakahara, M., Ohmi, T.: Quantum Computing: From Linear Algebra to Physical Realizations. CRC Press, New York (2008)

    Book  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Nigg, D., Müller, M., Martinez, E.A., Schindler, P., Hennrich, M., Monz, T., Martin-Delgado, M.A., Blatt, R.: Quantum computations on a topologically encoded qubit. SCIENCE 345(6194), 302–305 (2014). https://doi.org/10.1126/science.1253742

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yard, J.: Simultaneous classical-quantum capacities of quantum multiple access channels, Ph.D. dissertation, Electrical Engineering Department, Stanford University, Stanford, CA (2005)

Download references

Acknowledgements

The authors would like to thank the referees for some helpful comments. Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo. His research was supported by USA NSF Grant DMS 1331021, Simons Foundation Grant 351047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiu-Tung Poon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CK., Lyles, S. & Poon, YT. Error correction schemes for fully correlated quantum channels protecting both quantum and classical information. Quantum Inf Process 19, 153 (2020). https://doi.org/10.1007/s11128-020-02639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02639-z

Keywords

Navigation