Skip to main content
Log in

Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Sugarcane cultivation is of great economic and social importance worldwide. In vitro cloning using temporary immersion systems is an option to produce vitroplants of high genetic and phytosanitary quality to establish stock seedbeds. However, the sterilization of culture media through autoclaving increases production costs and limits the efficiency of temporary immersion systems. For that reason, the objective of this study was to evaluate the morphological and physiological changes caused by Vitrofural® in sugarcane plants under temporary immersion. We compared two types of culture media sterilization: chemical sterilization using Vitrofural® and autoclaving using Temporary Immersion Bioreactors. After four weeks of cultivation, we evaluated morphological (number of shoots, shoot length, and number of leaves per shoot) and physiological indicators (soluble and bound phenolics, and phenolics excreted to the culture medium). As well as chlorophyll-a, -b and total chlorophyll content. The results show that when Vitrofural® was added to culture medium, a higher number of shoots per explant, length of the shoots and number of leaves were observed in comparison with the shoots obtained in autoclaved sterilized medium. Furthermore, a reduced the amount of phenolics compounds were found in Vitrofural® treatent .In addition, the use of the Vitrofural® increased the synthesis of photosynthetic pigments respect to autoclaving. In conclusion, Vitrofural® has a positive effect in morphological and physiological of sugarcane cultured in vitro and is a low-cost alternative for the commercial micropropagation of sugarcane.

Key message

Vitrofural® produced a positive effect on the growth, content of photosynthetic pigments and compounds phenols during in vitro culture of sugar cane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

(cv):

Cultivar

BA:

6-benzyladenine

EtAc:

Ethyl acetate

FW:

Fresh weight

MeOH:

Methanol

mM:

Millimolar

MS:

Murashige and Skoog (1962) basal medium

NAA:

Naphthaleneacetic acid

PBZ:

Paclobutrazol

TIB® :

Temporary immersion bioreactor

References

  • Agramonte D, Jiménez FA, Pérez M, Gutiérrez O, Ramírez D, Pérez J, Alvarado Y, Castañedo N, Díaz G, Martín EL, Salazar E, Machado R (1997) Empleo de sustancias de acción antimicrobianas en la esterilización de los medios de cultivo en la micropropagación in vitro de la papa (Solanum tuberosum L.). In: Técnicas de Avanzada Aplicadas a la Propagación Masiva de Plantas BIOVEG´97. Libro de Resúmenes. 121–125. Ciego de Ávila, Cuba. (in Spanish)

  • Aziz E, Batool R, Akhtar W, Rehman S, Gregersen PL, Mahmood T (2019) Expression analysis of the polyphenol oxidase gene in response to signaling molecules, herbivory and wounding in antisense transgenic tobacco plants. 3 Biotech 9:55

    Article  Google Scholar 

  • Bala A, Singh B (2019) Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy 130:12–24

    Article  CAS  Google Scholar 

  • Bello-Bello JJ, Flores-Revilla C (2016) Certificación fitosanitaria de vitroplantas de Saccharum spp., para establecer semilleros básicos. AgroProductividad 9:35–39 (in Spanish)

    Google Scholar 

  • Bigotta AF, Hoya JW, Fultz LM (2019) Soil properties, microbial communities, and sugarcane yield in paired fields with short- or long-term sugarcane cultivation histories. Appl Soil Ecol 142:166–176

    Article  Google Scholar 

  • Blondeau JM, Castañedo N, González O, Medina R, Silveira E (1999) In vitro evaluation of G-1: a novel antimicrobial compound. Int J Antimicrob Agents 11:163–166

    Article  CAS  Google Scholar 

  • Castañedo N, Díaz G, Agramonte D, Martín E, Salazar E, Ramírez A, Alvarado Y, González M, Cueto M, González E, Pérez J, González C, Jiménez F, Pérez M, Gutiérrez O, Ramírez D, Silveira E, Peñate E, Acosta M (1999) Empleo de sustancias de acción antimicrobiana en la esterilización química de los medios de cultivo en la micropropagación de plantas, Registro del Vitrofural en Registro Central de Plaguicidas No 013/99, Tomo 3, Folio 249. Ministerio de la Agricultura, Cuba. (in Spanish)

  • Chiara C, Antognoni F, Biondi S, Fraternalea A, Verardod G, Gorassinie A, Scocciantia V (2019) Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. Plant Physiol Biochem 141:95–104

    Article  CAS  Google Scholar 

  • Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 253–270

    Chapter  Google Scholar 

  • Escalona M, Fundora Z, Aragón C, Capote I, Castañedo N, Pina D, González O (2010) Chemical sterilization for propagation of pineapple plantlets in temporary immersion bioreactor. Pineapple News 17:9–14

    Google Scholar 

  • FAOSTAT (Food and Agriculture Organization of the United Nations) (2019) Statistics division. Production and trade of sugarcane: country by product. http://www.fao.org/faostat/es/#data

  • Fuoco R, Bogani P, Capodaglio G, Del Bubba M, Abollino O, Giannarelli S, Spiriti MM, Muscatello B, Doumett S, Turetta C, Zangrando R, Zelano V, Buiatti M (2013) Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene. J Plant Physiol 170:668–675

    Article  CAS  Google Scholar 

  • González-Olmedo JL, Fundora Z, Molina LA, Abdulnour J, Desjardins Y, Escalona M (2005) New contributions to propagation of pineapple (Ananas comosus L. merr) in temporary immersion bioreactors. In vitro Cell Dev Biol Plant 41:87–90

    Article  Google Scholar 

  • Gurr S, Pherson D, Bowles J (1992) Lignin and associated phenolic acids in cell walls. In: Wilkinson DL (ed) Molecular plant pathology: a practical approach. IRL Press, Oxford, pp 51–59

    Google Scholar 

  • Hasnera C, Alves de A, Limab, Winterc E (2019) Technology advances in sugarcane propagation: a patent citation study. World Patent Inf 56:9–16

    Article  Google Scholar 

  • Jukanti A (2017) Function(s)/role(s) of polyphenol oxidases. In: Jukanti A (ed) Polyphenol oxidases (PPOS) in plants. Springer, Singapore, pp 73–92

    Chapter  Google Scholar 

  • Kadir R, Hale MD (2017) Antioxidant potential and content of phenolic compounds in extracts of twelve selected Malaysian commercial wood species. Eur J Wood Wood Product 75:615–622

    Article  CAS  Google Scholar 

  • Lorenzo J, Blanco M, Gónzalez A, Cid M, Escalona M, Borroto C (2001) Sugarcane micropropagation and phenolic excretion. Plant Cell Tissue Organ Cult 65:1–8

    Article  CAS  Google Scholar 

  • Lorenzo JC, Gonzalez BL, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoots formation in an improved, temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200

    Article  CAS  Google Scholar 

  • Martínez-Estrada E, Caamal-Velázquez JH, Salinas-Ruíz J, Bello-Bello JJ (2017) Assessment of somaclonal variation during sugarcane micropropagation in temporary immersion bioreactors by intersimple sequence repeat (ISSR) markers. In vitro Cell Dev Biol Plant 53:553–560

    Article  Google Scholar 

  • Medeiros de Araujo M, Cabral E, Mota GV, Willadino L, Camara T (2015) Propagación in vitro en Sistemas de Inmersión Temporal de plantas de caña de azúcar variedad ‘RB 872552’ obtenidas de embriones somáticos. Biotecnol Veg 15:187–191 (in Spanish)

    Google Scholar 

  • Medjemem N, Harabi A, Bouzerara F, Foughali L, Boudaira B, Guechi A, Brihi N (2016) Elaboration and characterization of low cost ceramics microfiltration membranes applied to the sterilization of plant tissue culture media. J Taiwan Inst Chem Eng 59:9–8

    Article  Google Scholar 

  • Micheli M, Pellegrino S, Piccioni E, Standardi A (2002) Effects of double encapsulation and coating on synthetic seed conversion in M.26 apple rootstock. J Microencapsul 19:347–356

    Article  CAS  Google Scholar 

  • Murashigue T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–479

    Article  Google Scholar 

  • Nápoles L, Cid M, Escalona M, Marrero P, Vásquez N, Concepción O (2017) Caracterización histológica del enraizamiento in vitro de brotes de caña de azúcar en medio de cultivo líquido. Biotecnol Veg 17:113–123 (in Spanish)

    Google Scholar 

  • Pérez-Alonso N, Chong-Pérez B, Capote A, Pérez A, Gerth A, Angenon G, Jiménez E (2016) Biotechnological approaches for biomass and cardenolide production in Digitalis purpureaL. In: Jain S (ed) Protocols for In vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Methods in molecular biology, 2nd edn. Humana Press, New York, vol 1391, pp 81–102

  • Porra RJ (2002) The chequered history of the develoment and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  Google Scholar 

  • Redae MH, Ambayeb TG (2018) In vitro propagation of sugarcane (Saccharum officinarum L.) variety C86- 165 through apical meristem. Biocatal Agric Biotechnol 14:228–234

    Article  Google Scholar 

  • Rodríguez R, Aragón C, Escalona M, González J, Desjardins Y (2008) Carbon metabolism in leves of micropropagated sugarcane during acclimatization phase. In vitro Cell Dev Biol Plant 44:533–539

    Article  Google Scholar 

  • Scalabrin E, Radaelli M, Capodaglio G (2016) Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses. Plant Physiol Biochem 103:53–60

    Article  CAS  Google Scholar 

  • Sentíes-Herrera HE, Gómez-Merino FC (2014) Nuevas directrices en mejoramiento genético de caña de azúcar (Saccharum spp.). AgroProductividad 7:9–15 (in Spanish)

    Google Scholar 

  • Smetanska I (2018) Sustainable production of polyphenols and antioxidants by plant In vitro cultures. In: Pavlov A, Bley T (eds) Bioprocessing of plant In vitro systems. Reference series in phytochemistry. Springer, Cham, pp 225–269

    Chapter  Google Scholar 

  • Sokamte TA, Mbougueng PD, Tatsadjieu NL, Sachindra NM (2019) Phenolic compounds characterization and antioxidant activities of selected spices from Cameroon. S Afr J Bot 121:7–15

    Article  CAS  Google Scholar 

  • SpinosoCastillo JL, ChavezSantoscoy RA, Bogdanchikova N, PerezSato JA, MoralesRamos V, BelloBello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. Ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult 129:195–207

    Article  CAS  Google Scholar 

  • Venturieri GA, Venturieri AR, Leopoldo G (2013) Sterilization of culture media for orchids using a microwave oven. In vitro Cell Dev Biol Plant 49:137–144

    Article  Google Scholar 

  • Weber BN, Witherell RA, Charkowski AO (2015) Low-cost potato tissue culture with microwave and bleach media preparation and sterilization. Am J Potato Res 92:128–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMR and ME conceived and designed research. AMR, MRP, and RCRE conducted experiments. OM and MD analyzed and reviewed the statistical analysis. MARM, MD, OM and JJBB wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jericó J. Bello-Bello.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated By Bart Panis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Rivero, A., Ramírez-Mosqueda, M.A., Mosqueda Frómeta, O. et al. Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant Cell Tiss Organ Cult 141, 447–453 (2020). https://doi.org/10.1007/s11240-020-01800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01800-x

Keywords

Navigation