Skip to main content

Advertisement

Log in

The ESCRT System Plays an Important Role in the Germination in Candida albicans by Regulating the Expression of Hyphal-Specific Genes and the Localization of Polarity-Related Proteins

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida albicans is an important opportunistic fungal pathogen, and its pathogenicity is closely related to its ability to form hyphae. ESCRT system was initially discovered as a membrane-budding machinery involved in the formation of multivesicular bodies. More recently, the role of ESCRT is vastly expanded. Early reports showed that the ESCRT system is involved in inducing hyphae under neutral-alkaline environment via the Rim101 pathway. We previously found that in the environment that contains serum, one ESCRT protein, Vps4, is essential for polarity maintenance during hyphal formation, as its deletion causes the formation of multiple hyphae. In this study, we found that Vps4 is also essential for the proper localization of Cdc42 and Cdc3, which may be related to its role in polarity maintenance. We also discovered that deletions of the ESCRT proteins significantly delay germination and cause downregulation of hyphal-specific genes, most prominent of which is HGC1. Since Hgc1 is essential for many aspects of hyphal growth, its downregulation could explain our observed phenotypes. Our further studies show that ESCRT proteins are involved in the dynamics of Ras1. Deletions of VPS4 or SNF7 significantly decrease the recovery rate of GFP-Ras1 in the fluorescence recovery after photobleaching experiment. The decreased Ras1 dynamics may disrupt the signaling pathway and lead to downregulation of hyphal-specific genes. Therefore, in this study we discovered a novel and Rim101 independent mechanism used by the ESCRT system to regulate hyphal induction and polarity maintenance, which could provide insights on the pathogenicity mechanism of Candia albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Viscoli C, Girmenia C, Marinus A, Collette L, Martino P, Vandercam B, Doyen C, Lebeau B, Spence D, Krcmery V, De Pauw B, Meunier F. Candidemia in cancer patients: a prospective, multicenter surveillance study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC). Clin Infect Dis. 1999;28:1071–9.

    CAS  PubMed  Google Scholar 

  2. Beck-Sague C, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis. 1993;167:1247–51.

    CAS  PubMed  Google Scholar 

  3. Kibbler CC, Seaton S, Barnes RA, Gransden WR, Holliman RE, Johnson EM, Perry JD, Sullivan DJ, Wilson JA. Management and outcome of bloodstream infections due to Candida species in England and Wales. J Hosp Infect. 2003;54:18–24.

    CAS  PubMed  Google Scholar 

  4. Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737–48.

    CAS  PubMed  Google Scholar 

  5. Tsui, C., Kong, E.F., Jabra-Rizk, M. A. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016; 74: ftw018.

  6. Davis D, Wilson RB, Mitchell AP. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol. 2000;20:971–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 1997;16:1982–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmidt A, Gow NA, Brown AJ, Thomas DY. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA. 1996;93:13217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rocha CR, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell. 2001;12:3631–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol. 2009;19:621–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Piispanen AE, Bonnefoi O, Carden S, Deveau A, Bassilana M, Hogan DA. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. Eukaryot Cell. 2011;10:1473–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schroppel K. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol. 2001;42:673–87.

    CAS  PubMed  Google Scholar 

  13. Huang G, Huang Q, Wei Y, Wang Y, Du H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol. 2019;111:6–16.

    CAS  PubMed  Google Scholar 

  14. Ramage G, Saville SP, Wickes BL, López-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68:5459–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol. 2008;67:47–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2011;10:112–22.

    PubMed  PubMed Central  Google Scholar 

  17. Zheng XD, Wang Y, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Embo J. 2004;23:1845–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng XD, Lee RT, Wang YM, Lin QS, Wang Y. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. Embo J. 2007;26:3760–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. González-Novo A, Correa-Bordes J, Labrador L, Sánchez M, Vázquez de Aldana CR, Jiménez J. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol Biol Cell. 2008;19:1509–18.

    PubMed  PubMed Central  Google Scholar 

  20. Bishop A, Lane R, Beniston R, Chapa-y-Lazo B, Smythe C, Sudbery P. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28–Ccn1/Hgc1 kinase. EMBO J. 2010;29:2930–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol. 2013;5:a16766.

    Google Scholar 

  22. Von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, Sundquist WI. The protein network of HIV budding. Cell. 2003;114:701–13.

    Google Scholar 

  23. Yang D, Rismanchi N, Renvoise B, Lippincott-Schwartz J, Blackstone C, Hurley JH. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol. 2008;15:1278–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JA, Liu L, Gao FB. Autophagy defects contribute to neurodegeneration induced by dysfunctional ESCRT-III. Autophagy. 2009;5:1070–2.

    CAS  PubMed  Google Scholar 

  25. Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex. ESCRT-I Cell. 2001;106:145–55.

    CAS  PubMed  Google Scholar 

  26. Katzmann DJ, Stefan CJ, Babst M, Emr SD. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol. 2003;162:413–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Teis D, Saksena S, Emr SD. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell. 2008;15:578–89.

    CAS  PubMed  Google Scholar 

  28. Teo H, Perisic O, Gonzalez B, Williams RL. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev Cell. 2004;7:559–69.

    CAS  PubMed  Google Scholar 

  29. Raiborg C, Bremnes B, Mehlum A, Gillooly DJ, D'Arrigo A, Stang E, Stenmark H. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J Cell Sci. 2001;114:2255–63.

    CAS  PubMed  Google Scholar 

  30. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 2010;464:864–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol. 2010;11:556–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Monroe N, Han H, Gonciarz MD, Eckert DM, Karren MA, Whitby FG, Sundquist WI, Hill CP. The oligomeric state of the active Vps4 AAA ATPase. J Mol Biol. 2014;426:510–25.

    CAS  PubMed  Google Scholar 

  33. Yang D, Hurley JH. Structural role of the Vps4-Vta1 interface in ESCRT-III recycling. Structure. 2010;18:976–84.

    PubMed  PubMed Central  Google Scholar 

  34. Babst M, Wendland B, Estepa EJ, Emr SD. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. Embo J. 1998;17:2982–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scott A, Chung HY, Gonciarz-Swiatek M, Hill GC, Whitby FG, Gaspar J, Holton JM, Viswanathan R, Ghaffarian S, Hill CP, Sundquist WI. Structural and mechanistic studies of VPS4 proteins. Embo J. 2005;24:3658–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Haag C, Pohlmann T, Feldbrugge M. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking. PLoS Genet. 2017;13:e1006734.

    PubMed  PubMed Central  Google Scholar 

  37. Li M, Martin SJ, Bruno VM, Mitchell AP, Davis DA. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot Cell. 2004;3:741–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boysen JH, Mitchell AP. Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol Biol Cell. 2006;17:1344–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolf JM, Johnson DJ, Chmielewski D, Davis DA. The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis. Eukaryot Cell. 2010;9:1203–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kullas AL, Li M, Davis DA. Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot Cell. 2004;3:1609–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee SA, Jones J, Hardison S, Kot J, Khalique Z, Bernardo SM, Lazzell A, Monteagudo C, Lopez-Ribot J. Candida albicans VPS4 is required for secretion of aspartyl proteases and in vivo virulence. Mycopathologia. 2009;167:55–63.

    CAS  PubMed  Google Scholar 

  42. Zhang Y, Li W, Chu M, Chen H, Yu H, Fang C, Sun N, Wang Q, Luo T, Luo K, She X, Zhang M, Yang D. The AAA ATPase Vps4 plays important roles in Candida albicans hyphal formation and is inhibited by DBeQ. Mycopathologia. 2016;181:329–39.

    CAS  PubMed  Google Scholar 

  43. Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993;134:717–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng XD, Wang YM, Wang Y. CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Mol Microbiol. 2003;49:1391–405.

    CAS  PubMed  Google Scholar 

  45. Walther A, Wendland J. An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet. 2003;42:339–43.

    CAS  PubMed  Google Scholar 

  46. Bassilana M, Arkowitz RA. Rac1 and Cdc42 have different roles in Candida albicans development. Eukaryot Cell. 2006;5:321–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wenzel M, Vischer NOE, Strahl H, Hamoen LW. Assessing membrane fluidity and visualizing fluid membrane domains in bacteria using fluoresent membrane dyes. Bioprotoc. 2018;8:e3063.

    CAS  Google Scholar 

  48. Xu W, Smith FJ Jr, Subaran R, Mitchell AP. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell. 2004;15:5528–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dyer JM, Savage NS, Jin M, Zyla TR, Elston TC, Lew DJ. Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr Biol. 2013;23:32–41.

    CAS  PubMed  Google Scholar 

  50. Zheng ZY, Cheng CM, Fu XR, Chen LY, Xu L, Terrillon S, Wong ST, Bar-Sagi D, Songyang Z, Chang EC. CHMP6 and VPS4A mediate the recycling of Ras to the plasma membrane to promote growth factor signaling. Oncogene. 2012;31:4630–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu Y, Fang HM, Wang YM, Zeng GS, Zheng XD, Wang Y. Ras1 and Ras2 play antagonistic roles in regulating cellular cAMP level, stationary-phase entry and stress response in Candida albicans. Mol Microbiol. 2009;74:862–75.

    CAS  PubMed  Google Scholar 

  52. Carlisle PL, Kadosh D. Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryot Cell. 2010;9:1320–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeidler U, Lettner T, Lassnig C, Muller M, Lajko R, Hintner H, Breitenbach M, Bito A. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res. 2009;9:126–42.

    CAS  PubMed  Google Scholar 

  54. Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep. 2017;7:5692–5692.

    PubMed  PubMed Central  Google Scholar 

  55. Kornitzer D. Regulation of Candida albicans hyphal morphogenesis by endogenous signals. J Fungi (Basel). 2019;5:21.

    CAS  Google Scholar 

  56. Rieder SE, Banta LM, Köhrer K, McCaffery JM, Emr SD. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 1996;7:985–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pulver R, Heisel T, Gonia S, Robins R, Norton J, Haynes P, Gale CA. Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. Eukaryot Cell. 2013;12:482–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Szymanska E, Budick-Harmelin N, Miaczynska M. Endosomal, "sort" of signaling control: the role of ESCRT machinery in regulation of receptor-mediated signaling pathways. Semin Cell Dev Biol. 2018;74:11–20.

    CAS  PubMed  Google Scholar 

  59. Christ L, Wenzel EM, Liestol K, Raiborg C, Campsteijn C, Stenmark H. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol. 2016;212:499–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilson RB, Davis D, Mitchell AP. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol. 1999;181:1868–74.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from National Natural Science Foundation of China (#31070682 and #31640004) and the Program of the Co-Construction with Beijing Municipal Commission of Education of China.

Author information

Authors and Affiliations

Authors

Contributions

TY, YL and XL carried out the experiments; TY made the figures and wrote the paper; WL designed the research and interpreted the data; DY designed research, interpreted the data and wrote the paper.

Corresponding author

Correspondence to Dong Yang.

Ethics declarations

Conflict of interest

The authors declre that they have no conflict of interest.

Additional information

Handling Editor: Patrick CY Woo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Li, W., Li, Y. et al. The ESCRT System Plays an Important Role in the Germination in Candida albicans by Regulating the Expression of Hyphal-Specific Genes and the Localization of Polarity-Related Proteins. Mycopathologia 185, 439–454 (2020). https://doi.org/10.1007/s11046-020-00442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00442-z

Keywords

Navigation