Skip to main content

Advertisement

Log in

Candida Biofilms: An Update on Developmental Mechanisms and Therapeutic Challenges

  • Review
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Fungi of the genus Candida are important etiological agents of superficial and life-threatening infections in individuals with a compromised immune system. One of the main characteristics of Candida is its ability to form highly drug tolerance biofilms in the human host. Biofilms are a dynamic community of multiple cell types whose formation over time is orchestrated by a network of transcription regulators. In this brief review, we provide an update of the processes involved in biofilm formation by Candida spp. (formation, treatment, and control), as well as the transcriptional circuitry that regulates its development and interactions with other microorganisms. Candida albicans is known to build mixed species biofilms with other Candida species and with various other bacterial species in different host niches. Taken together, these properties play a key role in Candida pathogenesis. In addition, this review gathers recent studies with new insights and perspectives for the treatment and control of Candida biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van de Veerdonk FL, Kullberg B-J, Netea MG. Pathogenesis of invasive candidiasis. Curr Opin Crit Care. 2010;16(5):453–9.

    PubMed  Google Scholar 

  2. Ganguly S, Mitchell AP. Mucosal biofilms of Candida albicans. Curr Opin Microbiol. 2011;14:380–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo F, Yang Y, Kang Y, Zang B, Cui W, Qin B, et al. Invasive candidiasis in intensive care units in china: a multicentre prospective observational study. J Antimicrob Chemother. 2013;68:1660–8.

    CAS  PubMed  Google Scholar 

  4. Bandara HM, Matsubara VH, Samaranayake LP. Future therapies targeted towards eliminating Candida biofilms and associated infections. Expert Rev Anti Infect Ther. 2017;15(3):299–318.

    CAS  PubMed  Google Scholar 

  5. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011.

    PubMed  Google Scholar 

  6. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.

    PubMed  Google Scholar 

  7. Eliakim-Raz N, Babaoff R, Yahav D, Yanai S, Shaked H, Bishara J. Epidemiology, microbiology, clinical characteristics, and outcomes of candidemia in internal medicine wards-a retrospective study. Int J Infect Dis. 2016;52:49–544.

    PubMed  Google Scholar 

  8. Tso GHW, Reales-Calderon JA, Pavelka N. The elusive anti-Candida vaccine: lessons from the past and opportunities for the future. Front Immunol. 2018;9:897.

    PubMed  PubMed Central  Google Scholar 

  9. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a Persistent Public Health Problem. Clin Microbiol Rev. 2007;20(1):133–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tortorano AM, Dho G, Prigitano A, Breda G, Grancini A, Emmi V, et al. Invasive fungal infections in the intensive care unit: a multicentre, prospective, observational study in Italy (2006–2008). Mycoses. 2012;55(1):73–9.

    PubMed  Google Scholar 

  11. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41–4.

    CAS  PubMed  Google Scholar 

  12. Dudiuk C, Berrio I, Leonardelli F, Morales-Lopez S, Theill L, Macedo D, et al. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J Antimicrob Chemother. 2019;74(8):2295–302.

    CAS  PubMed  Google Scholar 

  13. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-resistant Candida haemulonii and C. auris. Tel Aviv Israel Emerg Infect Dis. 2017;23(2):195–203.

    CAS  Google Scholar 

  14. Lockhart SR, Etienne KA, Vallabhaneni S, Joveria F, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40.

    CAS  PubMed  Google Scholar 

  15. Morales-Lopez SE, Parra-Giraldo CM, Ceballos-Garzón A, Martínez HP, Rodríguez GJ, et al. Invasive infections with multidrug-resistant yeast Candida auris. Colombia Emerg Infect Dis. 2017;23(1):162–4.

    PubMed  Google Scholar 

  16. Nett JE. Candida auris: an emerging pathogen "incognito"? PLoS Pathog. 2019;15(4):e1007638.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. de Jong AW, Hagen F. Attack, defend and persist: how the fungal pathogen Candida auris was able to emerge globally in healthcare environments. Mycopathologia. 2019;184(3):353–65.

    PubMed  Google Scholar 

  18. Calderone RA, Fonzi A. Virulence factors of Candida albicans. Trends Microbiol. 2001;9:327–35.

    CAS  PubMed  Google Scholar 

  19. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–28.

    PubMed  PubMed Central  Google Scholar 

  20. Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol. 2016;54(3):149–69.

    PubMed  Google Scholar 

  21. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15:1150–5.

    CAS  PubMed  Google Scholar 

  23. Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012;3:315–22.

    PubMed  PubMed Central  Google Scholar 

  24. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148:126–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol. 2015;96:1226–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18:310–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Verma-Gaur J, Traven A. Post-transcriptional gene regulation in the biology and virulence of Candida albicans. Cell Microbiol. 2016;18(6):800–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Alim D, Sircaik S, Panwar SL. The significance of lipids to biofilm formation in Candida albicans: an emerging perspective. J Fungi. 2018;4(4):2–18.

    Google Scholar 

  29. Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–311.

    CAS  PubMed  Google Scholar 

  30. Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1–6.

    CAS  PubMed  Google Scholar 

  31. Motaung TE, Ells R, Pohl CH, Albertyn J, Tsilo TJ. Genome-wide functional analysis in Candida albicans. Virulence. 2017;8(8):1563–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64.

    PubMed  PubMed Central  Google Scholar 

  33. Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL, et al. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS ONE. 2012;7(3):e33362.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology. 2012;158(Pt 12):2975–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw18.

    Google Scholar 

  36. Sundstrom P, Balish E, Allen CM. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis. 2002;185(4):521–30.

    CAS  PubMed  Google Scholar 

  37. Naglik JR, König A, Hube B, Gaffen SL. Candida albicans-epithelial interactions and induction of mucosal innate immunity. Curr Opin Microbiol. 2017;40:104–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Orsi CF, Borghi E, Colombari B, Neglia RG, Quaglino D, Ardizzoni A, et al. Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm production and fungal susceptibility to microglial cells. Microb Pathog. 2014;69–70:20–7.

    PubMed  Google Scholar 

  39. Araújo D, Henriques M, Silva S. Portrait of Candida species biofilm regulatory network genes. Trends Microbiol. 2017;25(1):62–75.

    PubMed  Google Scholar 

  40. de Barros PP, Rossoni RD, De Camargo RF, Junqueira JC, Jorge AO. Temporal profile of biofilm formation, gene expression and virulence analysis in Candida albicans strains. Mycopathologia. 2017;182(3–4):285–95.

    PubMed  Google Scholar 

  41. Kadosh D, Johnson AD. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell. 2005;16:2903–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Carlisle PL, Banerjee M, Lazzell A, Monteagudo C, López-Ribot JL, Kadosh D. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci USA. 2009;106:599–604.

    CAS  PubMed  Google Scholar 

  43. Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 2009;8(12):1909–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Monniot C, Boisramé A, Da Costa G, Chauvel M, Sautour M, Bougnoux ME, et al. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation. PLoS ONE. 2013;8(12):e82395.

    PubMed  PubMed Central  Google Scholar 

  45. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532:64–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108.

    CAS  PubMed  Google Scholar 

  47. Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, et al. Portrait of Candida albicans adherence regulators. PLoS Pathog. 2012;8:e1002525.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett. 2002;214:95e100.

    Google Scholar 

  49. Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schock U, et al. A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet. 2012;8:e1003118.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, et al. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5(4):e01333–e1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell. 1660e;10:1660e9.

    Google Scholar 

  52. Nett JE, Crawford K, Marchillo K, Andes DR. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother. 2010;54:3505–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nobile CJ, Nett JE, Hernday A, Homann OR, Deneault J-S, Nantel A, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 2009;7:e1000133.

    PubMed  PubMed Central  Google Scholar 

  54. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, et al. Governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7:e1002257.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol. 2009;19:621–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Uppuluri P, Acosta Zaldívar M, Anderson MZ, Dunn MJ, Berman J, et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells. MBio. 2018;9(4):e01338–e1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Granger BL. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans. Eukaryot Cell. 2012;11:795e805.

    Google Scholar 

  58. Cavalheiro M, Teixeira MC. Candida biofilms: threats, challenges, and promising strategies. Front Med. 2018;5:28.

    Google Scholar 

  59. Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.

    CAS  PubMed  Google Scholar 

  60. Esher SK, Fidel PL Jr, Noverr MC. Candida/Staphylococcal polymicrobial intra-abdominal infection: pathogenesis and perspectives for a novel form of trained innate immunity. J Fungi. 2019;5(2):E37.

    Google Scholar 

  61. O'Donnell LE, Robertson D, Nile CJ, Cross LJ, Riggio M, Sherriff A, et al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE. 2015;10(9):e0137717.

    PubMed  PubMed Central  Google Scholar 

  62. Kean R, Delaney C, Rajendran R, Sherry L, Metcalfe R, Thomas R, et al. Gaining insights from Candida biofilm heterogeneity: one size does not fit all. J Fungi. 2018;4(1):E12.

    Google Scholar 

  63. Kean R, Rajendran R, Haggarty J, Townsend EM, Short B, Burgess KE, et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front Microbiol. 2017;8:258.

    PubMed  PubMed Central  Google Scholar 

  64. Hogan DA, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296:2229–32.

    CAS  PubMed  Google Scholar 

  65. Bandara H, Yau JYY, Watt RM, Jin LJ, Samaranayake LP. Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol. 2010;10:125.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Neidig A, Yeung AT, Rosay T, Tettmann B, Strempel N, Rueger M, et al. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol. 2013;13:77.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Abdel-Rhman SH, El-Mahdy AM, El-Mowafy M. Effect of Tyrosol and farnesol on virulence and antibiotic resistance of clinical isolates of Pseudomonas aeruginosa. Biomed Res Int. 2015;2015:456463.

    PubMed  Google Scholar 

  68. Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa interaction, with focus on the role of eicosanoids. Front Physiol. 2016;7:64.

    PubMed  PubMed Central  Google Scholar 

  69. Fourie R, Pohl CH. Beyond antagonism: the interaction between Candida species and Pseudomonas aeruginosa. J Fungi. 2019;5(2):E34.

    Google Scholar 

  70. Thein ZM, Samaranayake YH, Samaranayake LP. Characteristics of dual species Candida biofilms on denture acrylic surfaces. Arch Oral Biol. 2007;52:1200–8.

    CAS  PubMed  Google Scholar 

  71. Rossoni RD, Barbosa JO, Vilela SF, dos Santos JD, de Barros PP, Prata MC, et al. Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis. PLoS ONE. 2015;10(7):e0131700.

    PubMed  PubMed Central  Google Scholar 

  72. Tati S, Davidow P, Mccall A, Hwang-Wong E, Rojas IG, Cormack B, et al. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog. 2016;12:e1005522.

    PubMed  PubMed Central  Google Scholar 

  73. Li Q, Liu J, Shao J, Da W, Shi G, Wang T, et al. Decreasing cell population of individual Candida species does not impair the virulence of Candida albicans and Candida glabrata mixed biofilms. Front Microbiol. 2019;10:1600.

    PubMed  PubMed Central  Google Scholar 

  74. Pathirana RU, McCall AD, Norris HL, Edgerton M. Filamentous non-albicans Candida species adhere to Candida albicans and benefit from dual biofilm growth. Front Microbiol. 2019;10:1188.

    PubMed  PubMed Central  Google Scholar 

  75. Barros PP, Ribeiro FC, Rossoni RD, Junqueira JC, Jorge AO. Influence of Candida krusei and Candida glabrata on Candida albicans gene expression in in vitro biofilms. Arch Oral Biol. 2016;64:92–101.

    CAS  PubMed  Google Scholar 

  76. Mathe L, Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 2013;59(4):251–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tobudic S, Lassnigg A, Kratzer C, Graninger W, Presterl E. Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses. 2010;53(3):208–14.

    CAS  PubMed  Google Scholar 

  78. Tobudic S, Kratzer C, Lassnigg A, Presterl E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses. 2012;55(3):199–204.

    PubMed  Google Scholar 

  79. Sanchez-Vargas LO, Estrada-Barraza D, Pozos-Guillen AJ, Rivas-Caceres R. Biofilm formation by oral clinical isolates of Candida species. Arch Oral Biol. 2013;58(10):1318–26.

    CAS  PubMed  Google Scholar 

  80. Rodrigues CF, Silva S, Azeredo J, Henriques M. Detection and quantification of fluconazole with in Candida glabrata biofilms. Mycopathologia. 2015;179(5–6):391–5.

    CAS  PubMed  Google Scholar 

  81. Rodrigues CF, Silva S, Azeredo J, Henriques M. Candida glabrata's recurrent infections: biofilm formation during amphotericin B treatment. Lett Appl Microbiol. 2016;63(2):77–81.

    CAS  PubMed  Google Scholar 

  82. Rodrigues CF, Gonçalves B, Rodrigues ME, Silva S, Azeredo J, Henriques M. The effectiveness of voriconazole in therapy of Candida glabrata's biofilms oral infections and its influence on the matrix composition and gene expression. Mycopathologia. 2017;182(7–8):653–64.

    CAS  PubMed  Google Scholar 

  83. Marcos-Zambrano LJ, Escribano P, Bouza E, Guinea J. Comparison of the antifungal activity of micafungin and amphotericin B against Candida tropicalis biofilms. J Antimicrob Chemother. 2016;71(9):2498–501.

    CAS  PubMed  Google Scholar 

  84. Marcos-Zambrano LJ, Gomez-Perosanz M, Escribano P, Zaragoza O, Bouza E, Guinea J. Biofilm production and antibiofilm activity of echinocandins and liposomal amphotericin B in echinocandin-resistant yeast species. Antimicrob Agents Chemother. 2016;60(6):3579–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD, et al. Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis. 2017;23(2):328–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Manoharan RK, Lee JH, Kim YG, Kim SI, Lee J. Inhibitory effects of the essential oils alpha-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling. 2017;33(2):143–55.

    CAS  PubMed  Google Scholar 

  87. Behbehani J, Shreaz S, Irshad M, Karched M. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates. Microb Pathog. 2017;113:209–17.

    CAS  PubMed  Google Scholar 

  88. Liu RH, Shang ZC, Li TX, Yang MH, Kong LY. In vitro antibiofilm activity of eucarobustol E against Candida albicans. Antimicrob Agents Chemother. 2017;61(8):e02707–e2716.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Katragkou A, Roilides E, Walsh TJ. Can repurposing of existing drugs provide more effective therapies for invasive fungal infections? Expert Opin Pharmacother. 2016;17(9):1179–82.

    PubMed  Google Scholar 

  90. Oliveira AS, Martinez-de-Oliveira J, Donders GGG, Palmeira-de-Oliveira R, Palmeira-de-Oliveira A. Anti-Candida activity of antidepressants sertraline and fluoxetine: effect upon pre-formed biofilms. Med Microbiol Immunol. 2018;207(3–4):195–200.

    CAS  PubMed  Google Scholar 

  91. Silva RAC, da Silva RC, Neto JBD, da Silva AR, Campos RS, Sampaio LS, et al. In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates. Microbial Pathog. 2017;107:341–8.

    CAS  Google Scholar 

  92. Kathwate GH, Shinde RB, Karuppayil SM. Antiepileptic drugs inhibit growth, dimorphism, and biofilm mode of growth in human pathogen Candida albicans. Assay Drug Dev Technol. 2015;13(6):307–12.

    CAS  PubMed  Google Scholar 

  93. Caldara M, Marmiroli N. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation. Int J Antimicrob Agents. 2018;52(4):500–5.

    CAS  PubMed  Google Scholar 

  94. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. Combination treatment of invasive fungal infections. Clin Microbiol Rev. 2005;18(1):163–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fohrer C, Fornecker L, Nivoix Y, Cornila C, Marinescu C, Herbrecht R. Antifungal combination treatment: a future perspective. Int J Antimicrob Agents. 2006;27:25–30.

    PubMed  Google Scholar 

  96. De Cremer K, Staes I, Delattin N, Cammue BP, De Thevissen K, Brucker K. Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Rev Anti Infect Ther. 2015;13(8):973–84.

    PubMed  Google Scholar 

  97. Pemmaraju SC, Pruthi PA, Prasad R, Pruthi V. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J Exp Biol. 2013;51(11):1032–7.

    CAS  PubMed  Google Scholar 

  98. Lu M, Yang X, Yu C, Gong Y, Yuan L, Hao L, et al. Linezolid in combination with azoles induced synergistic effects against Candida albicans and protected Galleria mellonella against experimental candidiasis. Front Microbiol. 2018;9:3142.

    PubMed  Google Scholar 

  99. De Cremer K, Lanckacker E, Cools TL, Bax M, De Brucker K, Cos P, et al. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrob Agents Chemother. 2015;59(1):421–6.

    PubMed  Google Scholar 

  100. Liu S, Yue L, Gu W, Li X, Zhang L, Sun S. Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans. PLoS ONE. 2016;11(3):e0150859.

    PubMed  PubMed Central  Google Scholar 

  101. Kovacs R, Bozo A, Gesztelyi R, Doman M, Kardos G, Nagy F, et al. Effect of caspofungin and micafungin in combination with farnesol against Candida parapsilosis biofilms. Int J Antimicrob Agents. 2016;47(4):304–10.

    CAS  PubMed  Google Scholar 

  102. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol. 2015;13:91.

    Google Scholar 

  103. Souza ME, Lopes LQ, Bonez PC, Gundel A, Martinez DS, Sagrillo MR, et al. Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb Pathog. 2017;104:125–32.

    CAS  PubMed  Google Scholar 

  104. Pinto AP, Rosseti IB, Carvalho ML, da Silva BGM, Alberto-Silva C, Costa MS. Photodynamic antimicrobial chemotherapy (PACT), using toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis Photodyn Ther. 2018;21:182–9.

    CAS  PubMed  Google Scholar 

  105. Huang MC, Shen M, Huang YJ, Lin HC, Chen CT. Photodynamic inactivation potentiates the susceptibility of antifungal agents against the planktonic and biofilm cells of Candida albicans. Int J Mol Sci. 2018;19(2):434.

    PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the following Brazilian organizations: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant numbers 2017/02652-6 and 2019/05664-0 (PPB), 2017/19219-3 and 2018/21239-5 (RDR) and the National Council for Scientific Development/CNPq (306330/2018-0).

Author information

Authors and Affiliations

Authors

Contributions

PPB and JCJ participated in conceptualization; PPB, RDR, CMS, LS, and JCJ involved in writing—original draft preparation; and PPB, JCF, and JCJ took part in review and editing.

Corresponding author

Correspondence to Patrícia Pimentel de Barros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Mariana Henriques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, P.P., Rossoni, R.D., de Souza, C.M. et al. Candida Biofilms: An Update on Developmental Mechanisms and Therapeutic Challenges. Mycopathologia 185, 415–424 (2020). https://doi.org/10.1007/s11046-020-00445-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00445-w

Keywords

Navigation