Skip to main content
Log in

Phylogenetic structure of the Iranian capnodiaceous sooty mould fungi inferred from the sequences of rDNA regions and TEF1-a

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Taxonomically sooty mould fungi belong to different families and even orders and classes; however, the name sooty mould mostly was associated with the Capnodiaceae. Taxonomy of the capnodiaceous fungi is very complicated and needs more studies. In northern Iran, most of the sooty mould infections are caused by anamorphic Capnodiaceae. During this study, we isolated several sooty mould fungi and obtained 28S nuclear ribosomal DNA (nrDNA), internal transcribed spacer (ITS) rDNA and TEF1-a sequences and completed a phylogenetic analysis for better understanding of the relationships of genera in Capnodiaceae. In this study, 73 distinct isolates exhibiting characteristic capnodiaceous species morphology were obtained. After morphological examination, 25 isolates representing all cultured species were subjected for sequencing. All analyses commonly resolve five clades for Iranian collections. In TEF1-a phylogenetic tree, all sequences for sooty mould fungi are newly published and there are no records in genetic databases. Conidiocarpus guilanensis is described as a new species. Phylogenetic and taxonomic position of Antennariella, Chaetocapnodium and Chaetasbolisia is discussed. We propose the name Fumagospora G. Arnaud to be chosen for a Capnodium sensu Hughes/Fumagospora-associated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aveskamp MM, De Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista A (1959) Monografia dos fungos Micropeltaceae, vol 56. Instuto de Micologia, Universidade do Recife Publicaço, Recife, pp 1–519

    Google Scholar 

  • Batista AC, Ciferri R (1962) The Chaetothyriales Beih. Sydowia 3:1–129

    Google Scholar 

  • Batista AC, Ciferri R (1963a) Capnodiales. Saccardoa 2:1–296

    Google Scholar 

  • Batista AC, Ciferri R (1963b) The sooty moulds of the family Asbolisiaceae. Quaternion 31:1–229

    Google Scholar 

  • Bose T, Reynolds DR, Berbee ML (2014) Common, unsightly and until now undescribed: Fumiglobus pieridicola sp. nov., a sooty mould infesting Pieris japonica from western North America. Mycologia 106(4):746–756

    Article  PubMed  Google Scholar 

  • Byrami F, Khodaparast SA, Pedramfar H (2013) New records of citrus sooty mould fungi from North of Iran. J Crop Prot 2(3):369–374

    Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556

    Article  CAS  Google Scholar 

  • Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-Anun C, Crous PW (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia 23:55–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko-Ko TW, Hongsanan S, Jones EG et al (2011) Capnodiaceae. Fungal Divers 51(1):103–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Chomnunti P, Bhat DJ, Jones EG, Chukeatirote E, Bahkali AH, Hyde KD (2012) Trichomeriaceae, a new sooty mould family of Chaetothyriales. Fungal Divers 56(1):63–76

    Article  Google Scholar 

  • Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK et al (2014) The sooty moulds. Fungal Divers 66(1):1–36

    Article  Google Scholar 

  • Crous PW, Groenewald JZ, Shivas RG, Edwards J, Seifert KA, Alfenas AC, Alfenas RF, Burgess TI, Carnegie AJ, Hardy GSJ, Hiscock N (2011a) Fungal Planet description sheets: 69–91. Persoonia: Molecular Phylogeny and Evolution of Fungi 26:108–156

    Article  CAS  Google Scholar 

  • Crous PW, Summerell BA, Shivas RG, Romberg M, Mel’nik VA, Verkley GJM, Groenewald JZ (2011b) Fungal Planet description sheets: 92–106. Persoonia 27:130–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 37:265–270

    Article  Google Scholar 

  • Hongsanan S, Hyde KD, Bahkal AH, Camporesi E, Chomnunti P, Ekanayaka H, Gomes AAM, Hofstetter V, Jones EBG, Pinho DB, Pereira OL, Tian Q, Wanasinghe DN, Xu JC, Buyck B (2015a) Fungal biodiversity profiles 11–20. Cryptogam Mycol 36(3):355–380

    Article  Google Scholar 

  • Hongsanan S, Tian Q, Hyde KD, Chomnunti P (2015b) Two new species of sooty moulds, Capnodium coffeicola and Conidiocarpus plumeriae in Capnodiaceae. Mycosphere 6(6):814–824

    Article  Google Scholar 

  • Hughes SJ (1976) Sooty moulds. Mycologia 4:693–820

    Article  Google Scholar 

  • Hyde KD, Jones EG, Liu JK, Ariyawansa H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai DQ, Diederich P (2013) Families of dothideomycetes. Fungal Divers 63(1):1–313

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwee LT (1988) Studies on some sooty moulds on guava in Malaysia. Pertanika 11(3):349–355

    Google Scholar 

  • Khodaparast SA (2006) A survey on citrus sooty mould fungi in Guilan province, Iran. Rostaniha 7(1):59–65

    Google Scholar 

  • Khodaparast SA, Byrami F, Pourmoghaddam MJ, Amirmijani AR, Salimi M (2015) A further contribution to the knowledge of sooty mould fungi from Iran. Mycologia Iranica 2(1):46–58

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, vol 396. CABI, Wallingford

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 3:1870–1874

    Article  CAS  Google Scholar 

  • Liu JK, Hyde KD, Jones EG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SS, McKenzie EH, Phookamsak R, Phukhamsakda C, Shenoy BD (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 72(1):1–197

    Article  CAS  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz R (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95(5):2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Reynolds DR (1999) Foliicolous fungi 8: Vietnam. Gardens Bulletin Singapore 51:71–84

    Google Scholar 

  • Reynolds DR (2000) The Capnodium citri mould complex. Mycotaxon 148:141–147

    Google Scholar 

  • Reynolds DR (2010) Epifoliar fungi of Singapore. Gard Bull Singapore 61(2):401–435

  • Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Aust Syst Bot 18(3):265–289

    Article  Google Scholar 

  • Reynolds DR, Gilbert GS (2006) Epifoliar fungi from Panama. Cryptogam Mycol 27(3):249–270

    Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Stamatakis E (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Arx JA, Muller E (1975) A re-evaluation of the bitunicate ascomycetes with keys to families and genera. Stud Mycol 9:1–159

    Google Scholar 

  • White T, Bruns JTD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA sequences for phylogenetics. In: Innis MA, Gelf, DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic press, San Diego

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Deputy of Research and Technology of the University of Guilan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Akbar Khodaparast.

Additional information

Section Editor: Gerhard Rambold

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(FAS 45 kb)

ESM 2

(FAS 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaparast, S.A., Pourmoghaddam, M.J., Amirmijani, A. et al. Phylogenetic structure of the Iranian capnodiaceous sooty mould fungi inferred from the sequences of rDNA regions and TEF1-a. Mycol Progress 19, 155–169 (2020). https://doi.org/10.1007/s11557-019-01551-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01551-w

Keywords

Navigation