Skip to main content
Log in

Numerical Simulation on Interface Evolution and Pressurization Behaviors in Cryogenic Propellant Tank on Orbit

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The interface distribution and self-pressurization phenomenon are the most important problems in the storage of cryogenic liquid on orbit, which are difficult to be predicted and assessed exactly due to the complex non-equilibrium thermal behavior. In this paper, one 3-D CFD model based on volume of fluid (VOF) method is established to investigate the interface evolution and self-pressurization process in the liquid oxygen (LOX) tank in microgravity environment with various heat loads and gravitational accelerations. The validity of the model is verified by both the present ground experiments and the drop tower experiments from literature. The impact of microgravity on the gas-liquid interface distribution in the cryogenic tank is analyzed. Different from the ground condition, the distribution behavior of the gas-liquid two-phase fluid in microgravity is that the liquid is covering the tank wall, and the ullage is staying at the top of the tank surrounded by the liquid. Then the pressurization rate of the tank with different gravitational accelerations is obtained. The tank pressure rise rate increases with the reducing of the gravity. The results are beneficial to the optimal design of the cryogenic propellant tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A i :

interfacial area density vector

c p :

specific heat (J/(kg·K))

E :

fluid energy of unit mass

F vol :

body force

g :

gravity (m/s2)

h fg :

latent heat (J·kg−1)

h v :

surface curvature of vapor

h l :

the surface curvature of liquid

k eff :

thermal conductivity coefficient (W/(m·K))

L :

liquid level

LH2 :

liquid hydrogen

LOX:

liquid oxygen

M :

molar mass (g/mol)

\( {\dot{\boldsymbol{m}}}_i \) :

mass flux vector (kg/s)

P i :

interfacial pressure (kPa)

P v :

vapor pressure (kPa)

P sat :

saturation pressure (kPa)

R :

universal gas constant = 8.314 kJ/(mol·K)

S h :

energy flux rate

T i :

interfacial temperature (K)

T v :

vapor temperature (K)

T sat :

saturation temperature (K)

v :

velocity vector of fluid (m/s)

\( \dot{V} \) :

volumetric flow rate (m3/s)

VOF:

volume of fluid

σ :

evaporation efficiency

α :

volume fraction

σ lv :

interfacial surface tension (N/m)

ρ :

fluid density (kg/m3)

μ eff :

viscosity of fluid (Pa·s)

References

  • Brackbill, J., Kothe, D., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  Google Scholar 

  • Dalmon, A., Lepilliez, M., Tanguy, S., et al.: Comparison between the FLUIDICS experiment and direct numerical simulations of fluid sloshing in spherical tanks under microgravity conditions. Microgravity Sci. Technol. 31(1), 123–138 (2019)

    Article  Google Scholar 

  • Das, S., Chakraborty, S., Dutta, P.: Studies on thermal stratification phenomenon in LH2 storage vessel. Heat Transfer Engineering. 25(4), 54–66 (2004)

    Article  Google Scholar 

  • Fu J, Sunden B, Chen X. Analysis of self-pressurization phenomenon in a cryogenic fluid storage tank with VOF method. In: Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, California, 1–10 (2014)

  • Fu, J., Sunden, B., Chen, X., et al.: Influence of phase change on self-pressurization in cryogenic tanks under microgravity. Appl. Therm. Eng. 87, 225–233 (2015)

    Article  Google Scholar 

  • Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  Google Scholar 

  • Jazayeri, S., Khoei, E.: Numerical comparison of thermal stratification due natural convection in densified LOX and LN2 tanks. Am. J. Appl. Sci. 5(12), 1773–1779 (2008)

    Article  Google Scholar 

  • Kartuzova, O., Kassemi, M., Moder, J., et al.: Self-pressurization and spray cooling simulations of the multipurpose hydrogen test bed (MHTB) ground-based experiment. In: Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, pp. 1–19, Cleveland (2013)

  • Kassemi, M., Olga, K.: Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank. Cryogenics. 74, 138–153 (2016)

    Article  Google Scholar 

  • Kharangate, C., Issam, M.: Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 108, 1164–1196 (2017)

    Article  Google Scholar 

  • Khurana, T., Prasad, B., Ramamurthi, K., et al.: Thermal stratification in ribbed liquid hydrogen storage tanks. Int. J. Hydrog. Energy. 31(15), 2299–2309 (2006)

    Article  Google Scholar 

  • Lak T, Wood C. Cryogenic Fluid Management Technologies for Space Transportation. NASA-CR-193981; 1994

    Google Scholar 

  • Lee, W.: A pressure iteration scheme for two-phase flow modeling. In: Veziroglu, T.N. (ed.) Multiphase Transport Fundamentals, Reactor Safety, Applications, vol. 1. Hemisphere Publishing, Washington, DC (1980)

    Google Scholar 

  • Li, J., Liang, G.: Numerical simulation of phase change and heat transfer in cryogenic tank under the microgravity condition. Chin. J. Space Sci. 36(4), 513–509 (2016)

    Google Scholar 

  • Li, Z., Zhu, Z., Liu, Q., et al.: Simulating propellant reorientation of vehicle upper stage in microgravity environment. Microgravity Sci. Technol. 25(4), 237–241 (2013)

    Article  Google Scholar 

  • Li, J., Lin, H., Zhao, J., et al.: Dynamic behaviors of liquid in partially filled tank in short-term microgravity. Microgravity Sci. Technol. 30(6), 849–856 (2018)

    Article  Google Scholar 

  • Lin, C., Hasan, M.: Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment. In: Proceedings of the30thAerospace Sciences Meeting and Exhibit, Reno, United States, pp. 1–11 (1992)

    Google Scholar 

  • Lin, C., Van Dresar, N., Hasan, M.: A pressure control analysis of cryogenic storage systems. In: Proceedings of the27th Joint Propulsion Conference, Sacramento, United States, pp. 1–12 (1991)

    Google Scholar 

  • Liu, Z., Wang, L., Jin, Y., et al.: Development of thermal stratification in a rotating cryogenic liquid hydrogen tank. Int. J. Hydrog. Energy. 40(43), 15067–15077 (2015a)

    Article  Google Scholar 

  • Liu, Z., Li, Y., Wang, L., et al.: Evaporation calculation and pressurization process of on-orbit cryogenic liquid hydrogen storage tank. J. Xi'an Jiaotong Univ. 49(2), 135–140 (2015b)

    Google Scholar 

  • Liu, Z., Li, Y., Jin, Y.: Pressurization performance and temperature stratification in cryogenic final stage propellant tank. Appl. Therm. Eng. 106, 211–220 (2016)

    Article  Google Scholar 

  • Ludwig, C., Dreyer, M.: Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tank. Cryogenics. 63, 1–16 (2014)

    Article  Google Scholar 

  • Schrage, R.: A Theoretical Study of Interphase Mass Transfer. Columbia University Press, New York (1953)

    Book  Google Scholar 

  • Seo, M., Jeong, S.: Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model. Cryogenics. 50(9), 549–555 (2010)

    Article  Google Scholar 

  • Shi, J., Bi, M., Yang, X.: Experimental research on thermal stratification of liquefied gas in tanks under external thermal attack. Exp. Thermal Fluid Sci. 41(41), 77–83 (2012)

    Article  Google Scholar 

  • Wang, L., Li, Y., Li, C., et al.: CFD investigation of thermal and pressurization performance in LH2 tank during discharge. Cryogenics. 57(5), 63–73 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51676118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Huang.

Additional information

This article belongs to the Topical Collection: Multiphase Fluid Dynamics in Microgravity

Guest Editors: Tatyana P. Lyubimova, Jian-Fu Zhao

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Qin, X., Jiang, W. et al. Numerical Simulation on Interface Evolution and Pressurization Behaviors in Cryogenic Propellant Tank on Orbit. Microgravity Sci. Technol. 32, 59–68 (2020). https://doi.org/10.1007/s12217-019-09734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09734-6

Keywords

Navigation