Skip to main content
Log in

Inhibition of Cell Cycle Progression, Induction of Apoptosis, and Changes in Surface Markers of MEG-01 Megakaryoblastic Cells Exposed to a Random Positioning Machine

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

One cause of thrombocytopenia in astronauts after spaceflight is decreased platelet production. To increase our understanding of thrombopoiesis in humans while in space, we investigated the effects of simulated microgravity, achieved using a random positioning machine (RPM), on megakaryoblastic cells (MEG-01 cell line). Exposure of MEG-01 cells to simulated microgravity for up to one week significantly increased cellular apoptosis compared to the static group (1 g-control). Flow cytometry analysis of the cell cycle revealed a significant increase in the percentage of cells in the G0/G1 phase after one week of RPM-exposure compared to the static group. Additionally, after one week, a difference in morphology was detected between the cells of the static group and the cells exposed to microgravity conditions. The expression of the CD33 surface marker was significantly decreased after a one week of microgravity exposure compared to the 1 g-control. We, therefore, concluded that in MEG-01 cells, simulated microgravity induces apoptosis, inhibits cell cycle progression of cells from G0/G1 into S phase, decreases cell proliferation, and decreases the expression of surface markers. We believe that, with insufficient physiological compensation, these changes under microgravity conditions may lead to disorders of megakaryocytes differentiation and/or decreased platelet production. It should also be noted that the human cell line MEG-01 could be a useful model for studying the effects of simulated microgravity on platelet production because of their ability to generate platelet-like particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauer J., Bussen M., Wise P., Wehland M., Schneider S. & Grimm D.: Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Review Of Proteomics. 13, 697–705 (2016)

  • Beck M., K. Tabury, M. Moreels, P. Jacquet, P. Van Oostveldt, W.H. De Vos, S. Baatout.: Simulated microgravity decreases apoptosis in fetal fibroblasts. Int. J. Mol. Med. 30(2) 309–313 (2012)

    Article  Google Scholar 

  • Becker J.L. and Souza G.R.: Using space-based investigations to inform cancer research on Earth. Nature Reviews Cancer AOP (2013)

  • Benavides Damm T, Franco-Obregon A, Egli M.: Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts. Cell Cycle 12(18), 3001–3012 (2013)

    Article  Google Scholar 

  • Bizzarri M., Masiello M.G., Cucina A., Guzzi R.: Journey to Mars: A Biomedical Challenge. Perspective on future human space flight. Organisms. J. Biological Sciences. 1, 15–26 (2017)

  • Borst A.G., Van Loon J.J.W.A.: Technology and development for the random positioning machine, RPM. Microgravity Sci. Technol. 21, 1161–1165 (2009)

  • Brungs S., Egli M., Wuest S.L.: Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme.: Microgravity Sci. Technol. (2016)

  • Bucaro M.A., Zahm A.M., Risbud M.V. et al.: The effect of simulated microgravity on osteoblasts is independent of the induction of apoptosis. J. Cell. Biochem. 102, 483–495 (2007)

    Article  Google Scholar 

  • Buravkov S.V., Chernikov V. P., Konstantinova N. A., Buravkova L. B.: Influence of clinorotation on embryoid bodies morphology. Cell and Tissue Biology. 3(6), 532–537 (2009)

    Article  Google Scholar 

  • Buravkova L.B., Rudimov E.G., Andreeva E.R, Grigoriev A.I.: The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity. J. Cell. Biochem. 119(3), 2875–2885 (2018) https://doi.org/10.1002/jcb.26465

    Article  Google Scholar 

  • Coinu R., Chiaviello A., Galleri G., Franconi F., Crescenzi E, Palumbo G exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Lett. 580:2465–2470 (2006)

    Article  Google Scholar 

  • Corydon T.J, Kopp S., Wehland M., Braun M., Schutte A., Mayer T., Hulsing T., Oltmann H., Schmitz B., Hemmersbach R., Grimm D. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci. Rep. 6: 20043. (2016)

  • Cuccarolo P., Barbieri F., Sancandi M., et al.: Differential behaviour of normal, transformed and Fanconi’s anemia lymphoblastoid cells to modeled microgravity. J. Biomed. Sci. 17, 63–72 (2010)

    Article  Google Scholar 

  • Dai K. , Wang Y., Yan R., Shi Q. et al. Effects of microgravity and hypergravity on platelet functions.: Thromb. Haemost. 101, 902–908. (2009)

  • Demontis G.C., Germani M.M., Caiani E. G., Barravecchia I., Passino C., Angeloni D. Human Pathophysiological Adaptations to the Space Environment.: Front. Physiol., 02 (2017) https://doi.org/10.3389/fphys.2017.00547

  • Deutsch V.R., Tomer A. Megakaryocyte development and platelet production Br. J. Haematol.. 134(5), 453–466 (2006)

  • Gershovich P.M., Gershovich Iu.G., Buravkova L.B.: The role of multipotential mesenchymal stromal cells in adaptation of bone marrow precursors osteogenic cell type to microgravity. Ross Fiziol Zh Im I M Sechenova. Apr; 96(4), 406–418 (2010) [Article in Russian]

  • Grimm D. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells.: The FASEB Journal. 1–7 (2002)

  • Grimm D., Infanger M., Westphal K., Ulbrich C., Pietsch J., Kossmehl S., Vadrucci Baatout S., Flick B., Paul M., Bauer J.: A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. TissueEng. 15(8) 2267–2275, (2009)

    Article  Google Scholar 

  • Hansen L. K., D. J. Mooney, J. P. Vacanti, D. E. Ingber.: Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol. Biol. Cell 9 967–975, (1994)

    Article  Google Scholar 

  • Infanger M.: Induction of three dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial grow. Apoptosis. 11(5), 749 (2006a)

    Article  Google Scholar 

  • Infanger M, Kossmeh P, Shakibaei M, Bauer J, Kossmehl-Zorn S, Cogoli A, Curcio F, Oksche A, Wehland M, Kreutz R, Paul M, Grimm D.: Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324(2), 267–277 (2006b)

    Article  Google Scholar 

  • Italiano J.E.R., Hartwig J.H.: Megakaryocytes development and platelet formation.: Platelets, 3th edition, Elsevier. 27–49 (2013)

  • Janmaleki M., Pachenari M., Seyedpour S.M., R. Shahghadami & A. Sanati-Nezhad.: Impact of simulated microgravity on cytoskeleton and viscoelastic properties of endothelial cell. Sci. Rep. (6), Article number: 32418 (2016)

  • Kim Y.J. et al.: Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. BioMed Eng On Line 2–12, (2017)

  • Kopp S., Slumstrup T.J., Corydon Thomas J., Sahana J., Aleshcheva G., Islam T, Magnusson N.E., Wehland M., Bauer J., Infanger M., Grimm D.: Identifications of novel mechanisms in human breast cancer cells involving duct-like multicellular spheroid formation under simulated microgravity. Sci. Rep. 6, 268–287 (2016)

  • Krüger M., Pietsch J., Bauer J., Kopp S., Carvalho D.T.O., Baatout S., Moreels M., Melnik D., Wehland M., Egli M., Jayashree S., Kobberø S.D., Corydon T.J., Nebuloni S., Gass S., Evert M., Infanger M., Grimm D.: Growth of endothelial cells in space and in simulated microgravity - a comparison on the secretory level. Cell. Physiol. Biochem. 52(5) 1039–1060 (2019) https://doi.org/10.33594/000000071

  • Kunishima S., R. Kobayashi, T.J. Itoh, M. Hamaguchi and H. Saito.: Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood. 113, 458–461 (2009) https://doi.org/10.1182/blood-2008-06162610

  • Lewis M. The Cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity.: Adv. Space Biol. Med. (8): 77–128. (2002)

  • Li S., Shi Q., Liu G., et al.: Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions. J. Appl. Physiol. 108, 1241–1249 (2010)

    Article  Google Scholar 

  • Machlus K.R., Italiano E.J.R., The incredible journey: From megakaryocyte development to platelet formation.: J. Cell Biol. 201(6), 785–796 (2013) https://doi.org/10.1083/jcb.201304054

    Article  Google Scholar 

  • Maier J.A.: Impact of simulated microgravity on cell cycle control and cytokine release by U937 cells. Int. J. Immunopathol. Pharmacol. 19, 279–286 (2006)

    Article  MathSciNet  Google Scholar 

  • Plett P.A., Frankovitz S.M., Abonour R., Orschell-Traycoff C.M.: Proliferation of human hematopoietic bone marrow cells in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 37, 73–78 (2001)

    Article  Google Scholar 

  • Qian A., Zhang W., Xie Li. et al. Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7.: Acta Astronautica. 1–12 (2008). https://doi.org/10.1016/j.actaastro.2008.01.024

    Article  Google Scholar 

  • Ravid K., Lu J., Zimmet J.M., Jones M.R.J.: Roads to polyploidy: the megakaryocyte example. Cell. Physiol. 190(1), 7–20 (2002)

    Article  Google Scholar 

  • Rudimov E.G., Pogodina M.V. and Buravkova L.B.: Effect of modeled microgravity on the secretory activity of cultivated human endothelium cells. Aviakosm. Ekolog. Med. 48:30–35. (2014)

  • Russomano T., Dalmarco G., FFalcao P. The effects of hypergravity and microgravity on biomedical experiments.: Morgan & Claypool, (2008)

  • Schwer H.D., Lecine P., Tiwari S., Italiano JE Jr., Hartwig J.H., Shivdasani R.A. A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets.: Curr Biol. 17;11(8), 579–586 (2001)

    Article  Google Scholar 

  • Sokolovskaya A., Ignashkova T., Bochenkova A., Moskovtsev A., Baranov V., Kubatiev A.: Effects of simulated microgravity on cell cycle in human endothelial cells. Acta Astronautica. 99, 16–23 (2014) https://doi.org/10.1016/j.actaastro.2014.01.032

    Article  Google Scholar 

  • Svejgaard B., Wehland M., Ma X. et al.: Common effects on cancer cells exerted by a random positioning machine and a 2D clinostat. PLoS One 1(8) 1–22 (2015)

    Article  Google Scholar 

  • Takeda M. Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells.: Neurosci. Lett.. 463, 54–59 (2009)

    Article  Google Scholar 

  • Thon J.N., Montalvo A.S., Patel-Hett M.T., Devine J.L., Richardson A., Ehrlicher M.K., Larson K., Hoffmeister J.H., Hartwig J.E.: Italiano. Cytoskeletal mechanics of proplatelet maturation and platelet release. J. Cell Biol. 191, 861–874 (2010)

    Article  Google Scholar 

  • Ulbrich C., Westphal K., Pietsch J., Winkler H.D.F., Leder A., Bauer J., Kossmehl P., Grosse J., Schoenberger J., Infanger M., Egli M., Grimm D.: Characterization of human chondrocytes exposed to simulated microgravity. Cell. Physiol. Biochem. 25, 551–560 (2010)

    Article  Google Scholar 

  • Ullrich O., Huber K., and Lang K. Signal transduction in cells of the immune system in microgravity.: Cell Communication and Signaling. 6: 9, (2008)

  • Uva B.M.: Microgravity-induced apoptosis in cultured glial cells. Eur. J. Histochem. (46): 209–214. (2002)

    Article  Google Scholar 

  • Van Loon J.J.W.A. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space. 39, 1161–1165 (2007)

  • Wang X., Du J., Wang D., Zeng F., et al.: Effects of simulated microgravity on human brain nervous tissue. Neurosci. Lett. 627:199–204 (2016a)

    Article  Google Scholar 

  • Wang H.T., Yang B., Hu B., Chi X.H., Luo L.L., Yang H.Q., Lang X.L., Geng J., Qiao C.X., Li Y., Wu X.X., Zhu H.L., Lv M., Lu X.C.: The effect of amifostine on differentiation of the human megakaryoblastic Dami cell line. Cancer Med. 5(8): 2012–2021. (2016b) https://doi.org/10.1002/cam4.759

    Article  Google Scholar 

  • Warnke E., Kopp S., Wehland M., et al.: Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the Random Positioning Machine. Microgravity Sci. Technol. 247–260 (2015)

    Article  Google Scholar 

  • Wuest S.L., Richard S., Kopp S, Grimm D. and Egli M. Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture.: BioMed Research International. (2015)

  • Yang Y., Liu C., Lei X., et al.: Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and Thrombopoiesis in a Three-Dimensional Rotary Culture System. Stem Cells Transl. Med. 5, 175–185 (2016)

    Article  Google Scholar 

  • Yi Z.C., Xia B., Xue M., et al.: Simulated microgravity inhibits the proliferation of K562 erythroleukemia cells but does not result in apoptosis. Adv. Space Res. 44, 233–244 (2009)

    Article  Google Scholar 

  • Yoshimasa I., Shinji S., Tatsuhiro I. et al. Gene Expression Analysis during Platelet-Like Particle Production in Phorbol Myristate Acetate-Treated MEG-01. Cells. Biol. Pharm. Bull. 32(3) 354–358 (2009)

    Article  Google Scholar 

  • Yu M., and Cantor A.B.: Megakaryopoiesis and thrombopoiesis: an update on cytokines and lineage surface markers. Methods Mol. Biol. 788, 291–230 (2012)

  • Zhao J, Ma H, Wu L, Cao L, Yang Q, Dong H, Wang Z, Ma J, Li Z. The influence of simulated microgravity on proliferation and apoptosis in U251 glioma cells. In Vitro Cell Dev Biol Anim. 53(8), 744–751 (2017) https://doi.org/10.1007/s11626-017-0178-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Academy of Sciences (RAS; Russia), (project No. 0520-2019-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa A. Sokolovskaya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskaya, A.A., Korneeva, E.A., Virus, E.D. et al. Inhibition of Cell Cycle Progression, Induction of Apoptosis, and Changes in Surface Markers of MEG-01 Megakaryoblastic Cells Exposed to a Random Positioning Machine. Microgravity Sci. Technol. 32, 35–45 (2020). https://doi.org/10.1007/s12217-019-09737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09737-3

Keywords

Navigation