Skip to main content
Log in

Internal Wave Breathers in the Slightly Stratified Fluid

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The theory of long nonlinear oscillating wave packets (breathers) in a stratified fluid with a small density difference in a gravitational field is developed. The theory is based on the Gardner equation and its modifications, which are fully integrable with modern methods of the nonlinear wave theory. Examples of the breather generation are given and the conditions for their stability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ablowitz, M., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  • Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.Y., Chang, M.H., Farmer, D.M., Fringer, O.B., Fu, K.H., Gallacher, P.C., Graber, H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Johnston, T.M.S., Legg, S., Lee, I.H., Lien, R.C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.H., Pickering, A.I., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St Laurent, L.C., Venayagamoorthy, S.K., Wang, Y.H., Wang, J., Yang, Y.J., Paluszkiewicz, T., (David) Tang, T.Y.: The formation and fate of internal waves in the South China Sea. Nature. 521, 65–72 (2015)

    Google Scholar 

  • Baines, P.G.: Topographic Effects in Stratified Flows. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Benney, D.J.: Long nonlinear waves in fluid flows. J. Math. Phys. 45, 52–63 (1966)

    MathSciNet  MATH  Google Scholar 

  • Clarke, S., Grimshaw, R., Miller, P., Pelinovsky, E., Talipova, T.: On the generation of solitons and breathers in the modified Korteweg - de Vries equation. Chaos. 10(2), 383–392 (2000)

    MathSciNet  MATH  Google Scholar 

  • Didenkulova (Shurgalina), E.G.: Numerical modeling of soliton turbulence within the focusing Gardner equation: rogue wave emergence. Physica D (2019)

  • Djordjevic, V.D., Redekopp, L.G.: The fission and desintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr. 8, 1016–1024 (1978)

    Google Scholar 

  • Drazin, P.G., Johnson, R.S.: Solitons: an Introduction. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Duda, T.F., Lynch, J.F., Irish, J.D., Beardsley, R.C., Ramp, S.R., Chiu, C.-S., Tang, T.Y., Yang, Y.-J.: Internal tide and nonlinear internal wave behavior at the continental slope in the Northern South China Sea. IEEE J. Oceanic Engineering. 29(4), 1105–1130 (2004)

    Google Scholar 

  • Grimshaw, R.: Nonlinear wave equations for oceanic internal solitary waves. Stud. Appl. Math. 136, 214–237 (2015)

    MathSciNet  MATH  Google Scholar 

  • Grimshaw, R., Pelinovsky, E., Talipova, T.: The modified Korteweg–de Vries equation in the theory of the large–amplitude internal waves. Nonlinear Process. Geophys. 4, 237–250 (1997)

    Google Scholar 

  • Grimshaw, R., Pelinovsky, E., Poloukhina, O.: Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 9, 221–235 (2002)

    Google Scholar 

  • Grimshaw, R., Pelinovsky, E., Talipova, T., Ruderman, M., Erdely, R.: Short-living large-amplitude pulses in the nonlinear long-wave models described by the modified Korteweg – de Vries equation. Stud. Appl. Math. 114(2), 189–210 (2005)

    MathSciNet  MATH  Google Scholar 

  • Grimshaw, R., Slunyaev, A., Pelinovsky, E.: Generation of solitons and breathers in the extended Korteweg - de Vries equation with positive cubic nonlinearity. Chaos. 20, 013102 (2010a)

    MathSciNet  MATH  Google Scholar 

  • Grimshaw, R., Pelinovsky, E., Talipova, T., Kurkina, O.: Internal solitary waves: propagation, deformation and disintegration. Nonlinear Process. Geophys. 17, 633–649 (2010b)

    Google Scholar 

  • Grimshaw, R., Pelinovsky, E., Talipova, T., Sergeeva, A.: Rogue internal waves in the ocean: long wave model. European Physical J. Special Topics. 185, 195–208 (2010c)

    Google Scholar 

  • Grimshaw, R., Chow, K.W., Chan, H.N.: Modulational instability and rogue waves in shallow water models. In: Tobisch, E. (ed.) New Approaches to Nonlinear Waves, Lecture Notes in Physics 908, pp. 135–151. Springer International Publishing, Cham (2016)

    Google Scholar 

  • Kurkina, O., Talipova, T., Pelinovsky, E., Soomere, T.: Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water. J. Coastal Research SI. 64, 2042–2047 (2011a)

    Google Scholar 

  • Kurkina, O.E., Kurkin, A.A., Soomere, T., Pelinovsky, E.N., Rouvinskaya, E.A.: Higher-order (2+4) Korteweg-de Vries-like equation for interfacial waves in a symmetric three-layer fluid. Phys. Fluids. 23(11), 116602 (2011b)

    Google Scholar 

  • Kurkina, O.E., Kurkin, A.A., Rouvinskaya, E.A., Soomere, T.: Propagation regimes of interfacial solitary waves in a three-layer fluid. Nonlinear Process. Geophys. 22(2), 117–132 (2015)

    Google Scholar 

  • Kurkina, O., Rouvinskaya, E., Talipova, T., Soomere, T.: Propagation regimes and populations of internal waves in the Mediterranean Sea basin. Estuar. Coast. Shelf Sci. 185, 44–54 (2017a)

    Google Scholar 

  • Kurkina, O., Talipova, T., Soomere, T., Kurkin, A., Rybin, A.: The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk. Estonian J. Earth Sciences. 66(4), 238–255 (2017b)

    Google Scholar 

  • Kurkina, O., Talipova, T., Soomere, T., Giniyatullin, A., Kurkin, A.: Kinematic parameters of internal waves of the second mode in the South China Sea. Nonlin. Processes Geophys. 24, 645–660 (2017c)

    Google Scholar 

  • Lamb, G.L.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  • Lamb, K., Polukhina, O., Talipova, T., Pelinovsky, E., Xiao, W., Kurkin, A.: Breather generation in the fully nonlinear models of a stratified fluid. Physical Rev. E. 75(4), 046306 (2007)

    MathSciNet  Google Scholar 

  • Lee, J.H., Lozovatsky, I., Jang, S.-T., Jang, C.J., Hong, C.S., Fernando, H.J.S.: Episodes of nonlinear internal waves in the northern East China Sea. Geoph. Res. Letters. 33, L18601 (2006)

    Google Scholar 

  • Liu, T.Y., Chan, H.N., Grimshaw, R.H.J., Chow, K.W.: Internal rogue waves in stratified flows and the dynamics of wave packets. Nonlinear Analysis: Real World Applications. 44, 449–464 (2018)

    MathSciNet  MATH  Google Scholar 

  • Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi, B.H., Brovchenko, I., Terletska, K., Kim, D.C.: Internal solitary wave transformation at the bottom step in two-layer flow: the Gardner and Navier-stokes frameworks. Nonlinear Process. Geophys. 16, 33–42 (2009)

    Google Scholar 

  • Noonan, J.A., Smith, R.K.: Linear and weakly nonlinear internal wave theories applied to “morning glory” waves. Geoph. Astrophys. Fluid Dynamics. 33, 123–143 (1985)

    Google Scholar 

  • Orr, M.H., Mignerey, P.C.: Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves. J. Geophys. Res. 108(C3), 3064 (2003)

    Google Scholar 

  • Osborne, A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  • Pelinovsky, D., Grimshaw, R.: Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys. Letters A. 229, 165–172 (1997)

    MathSciNet  MATH  Google Scholar 

  • Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30, 1–10 (2018)

    Google Scholar 

  • Rottman, J.W., Grimshaw, R.: Atmospheric internal solitary waves. In: Grimshaw, R. (ed.) Environmental Stratified Flows, pp. 61–88. Springer US, New York (2002)

    Google Scholar 

  • Shroyer, E.L., Moum, J.N., Nash, J.D.: Mode 2 waves on the continental shelf: ephemeral components of the nonlinear internal wavefield. JGR. 115, C07001 (2010)

    Google Scholar 

  • Shurgalina, E.G.: The mechanism of the formation of freak waves in the result of interaction of internal waves in stratified basin. Fluid Dynamics. 53(1), 59–64 (2018)

    MathSciNet  MATH  Google Scholar 

  • Sutherland, B.R.: Internal Gravity Waves. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Talipova, T.G., Pelinovsky, E.N.: Modeling of propagating long internal waves in inhomogeneous ocean: theory and verification. Fundamental’naya i prikladnaya gidrofizika. Fundamental Applied Hydrophysics. 6(2), 46–54 (2013)

    Google Scholar 

  • Talipova, T.G., Pelinovsky, E.N., Kharif, C.: Modulation instability of long internal waves with moderate amplitudes in a stratified horizontally inhomogeneous ocean. JETP Lett. 94, 182–186 (2011)

    Google Scholar 

  • Talipova, T., Terletska, K., Maderich, V., Brovchenko, I., Jung, K.T., Pelinovsky, E., Grimshaw, R.: Internal solitary wave transformation over the bottom step: loss of energy. Phys. Fluids. 25, 032110 (2013)

    Google Scholar 

  • Talipova, T.G., Pelinovsky, E.N., Kurkin, А.А., Kurkina, О.Е.: Modeling the dynamics of intense internal wave on the shelf. Izvestiya, Atmospheric and Oceanic Physics. 50(6), 630–637 (2014)

    Google Scholar 

  • Vlasenko, V., Stashchuk, N.: Internal tides near the Celtic Sea shelf break: a new look at a well known problem. Deep-Sea Research I. 103, 24–36 (2015)

    Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. John Wiley & Sons, New York (1974)

    MATH  Google Scholar 

  • Zaussinger, F., Canfield, P., Froitzheim, A., Travnikov, V., Haun, P., Meier, M., Meyer, A., Heintzmann, P., Driebe, T., Egber, Ch.: AtmoFlow - investigation of atmospheric-like fluid flows under microgravity conditions. Microgravity Sci. Technol. (2019)

  • Zhang, C., Churazov, E., Schekochihin, A.A.: Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. 478(4), 4785–4798 (2018)

    Google Scholar 

Download references

Acknowledgements

The studies in section 3 were supported by the Russian Science Foundation (grant No 19-12-00253). The modeling used in section 4 is carried out with the financial support of the Russian Foundation for Basic Research (grant No 19-02-00111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Didenkulova.

Additional information

This article belongs to the Topical Collection: Multiphase Fluid Dynamics in Microgravity

Guest Editors: Tatyana P. Lyubimova, Jian-Fu Zhao

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talipova, T., Kurkina, O., Kurkin, A. et al. Internal Wave Breathers in the Slightly Stratified Fluid. Microgravity Sci. Technol. 32, 69–77 (2020). https://doi.org/10.1007/s12217-019-09738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09738-2

Keywords

Navigation