Skip to main content
Log in

Stable gene selection by self-representation method in fuzzy sample classification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In recent years, microarray technology and gene expression profiles have been widely used to detect, predict, or classify the samples of various diseases. The presence of large genes in these profiles and the small number of samples are known challenges in this field and are widely considered in previous papers. In previous studies, other topics such as the noise of microarray data or the dependence of selected genes on samples have been less considered. Therefore, we have tried to address these two issues by using a fuzzy classifier and stability index of selected genes, respectively. The proposed method is based on the regression function between the genes and class labels which is determined by the self-representing method. This regression function is determined individually for each class of the database. To minimize the effect of noise in microarray data, a fuzzy classifier is applied in the proposed model. Four databases of gene expression profiles are examined in this article, and the results indicate that the proposed model has a relative advantage over the previous methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gregory KB, Momin AA, Coombes KR, Baladandayuthapani V (2014) Latent feature decompositions for integrative analysis of multi-platform genomic data. IEEE/ACM Trans Comput Biol Bioinform 11(6):984–994. https://doi.org/10.1109/TCBB.2014.2325035

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hu Y, Liu J-X, Gao Y-L, Li S-J, Wang J (2019) Differentially expressed genes extracted by the tensor robust principal component analysis (TRPCA) method. Complexity 2019:1–13

    CAS  Google Scholar 

  3. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537. https://doi.org/10.1126/science.286.5439.531

    Article  CAS  PubMed  Google Scholar 

  4. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24(3):301–312. https://doi.org/10.1109/34.990133

    Article  Google Scholar 

  5. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, AAM H, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. https://doi.org/10.1038/415530a

    Article  Google Scholar 

  6. He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. Paper presented at the Proceedings of the 18th International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada

  7. Chang CF, Wai KM, Patterton HG (2004) Calculating the statistical significance of physical clusters of co-regulated genes in the genome: the role of chromatin in domain-wide gene regulation. Nucleic Acids Res 32(5):1798–1807. https://doi.org/10.1093/nar/gkh507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanchuan P, Fuhui L, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  9. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422. https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  10. Zhu P, Zuo W, Zhang L, Hu Q, Shiu SCK (2015) Unsupervised feature selection by regularized self-representation. Pattern Recogn 48(2):438–446. https://doi.org/10.1016/j.patcog.2014.08.006

    Article  Google Scholar 

  11. Zhu P, Zhu W, Wang W, Zuo W, Hu Q (2017) Non-convex regularized self-representation for unsupervised feature selection. Image Vis Comput 60:22–29. https://doi.org/10.1016/j.imavis.2016.11.014

    Article  Google Scholar 

  12. Shang R, Zhang Z, Jiao L, Liu C, Li Y (2016) Self-representation based dual-graph regularized feature selection clustering. Neurocomputing 171:1242–1253. https://doi.org/10.1016/j.neucom.2015.07.068

    Article  Google Scholar 

  13. Liu Y, Liu K, Zhang C, Wang J, Wang X (2017) Unsupervised feature selection via diversity-induced self-representation. Neurocomputing 219:350–363. https://doi.org/10.1016/j.neucom.2016.09.043

    Article  Google Scholar 

  14. Tang C, Cao L, Zheng X, Wang M (2018) Gene selection for microarray data classification via subspace learning and manifold regularization. Med Biol Eng Comput 56(7):1271–1284. https://doi.org/10.1007/s11517-017-1751-6

    Article  PubMed  Google Scholar 

  15. Yang K, Cai Z, Li J, Lin G (2006) A stable gene selection in microarray data analysis. BMC Bioinformatics 7(1):228–243. https://doi.org/10.1186/1471-2105-7-228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahmoodian H, Hamiruce Marhaban M, Abdulrahim R, Rosli R, Saripan I (2011) Using fuzzy association rule mining in cancer classification. Australas Phys Eng Sci Med 34(1):41–54. https://doi.org/10.1007/s13246-011-0054-8

    Article  PubMed  Google Scholar 

  17. Aziz R, Verma CK, Srivastava N (2016) A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genomics Data 8:4–15. https://doi.org/10.1016/j.gdata.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paul A, Sil J, Mukhopadhyay CD (2017) Gene selection for designing optimal fuzzy rule base classifier by estimating missing value. Appl Soft Comput 55:276–288. https://doi.org/10.1016/j.asoc.2017.01.046

    Article  Google Scholar 

  19. Mahmoodian H, Ebrahimian L (2016) Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybern Biomed Eng 36(3):466–472. https://doi.org/10.1016/j.bbe.2016.03.003

    Article  Google Scholar 

  20. Cetisli B Gene selection by using a linguistic hedged adaptive neuro-fuzzy classifier for cancer classification. In: 2009 IEEE 17th Signal Processing and Communications Applications Conference, 9–11 April 2009 2009. pp 257–260. https://doi.org/10.1109/SIU.2009.5136381

  21. Zhang M, Zhang L, Zou J, Yao C, Xiao H, Liu Q, Wang J, Wang D, Wang C, Guo Z (2009) Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes. Bioinformatics 25(13):1662–1668. https://doi.org/10.1093/bioinformatics/btp295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuncheva LI (2007) A stability index for feature selection. Paper presented at the Proceedings of the 25th conference on Proceedings of the 25th IASTED International Multi-Conference: artificial intelligence and applications, Innsbruck, Austria

  23. Kalousis A, Prados J, Hilario M (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst 12(1):95–116. https://doi.org/10.1007/s10115-006-0040-8

    Article  Google Scholar 

  24. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750. https://doi.org/10.1073/pnas.96.12.6745

    Article  CAS  PubMed  Google Scholar 

  25. Alter MD, Kharkar R, Ramsey KE, Craig DW, Melmed RD, Grebe TA, Bay RC, Ober-Reynolds S, Kirwan J, Jones JJ, Turner JB, Hen R, Stephan DA (2011) Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One 6(2):e16715. https://doi.org/10.1371/journal.pone.0016715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H-D, Xu Q-S, Liang Y-Z (2017) A phase diagram for gene selection and disease classification. Chemom Intell Lab Syst 167:208–213. https://doi.org/10.1016/j.chemolab.2017.06.008

    Article  CAS  Google Scholar 

  27. Zhang L, Zhou W, Wang B, Zhang Z, Li F (2018) Applying 1-norm SVM with squared loss to gene selection for cancer classification. Appl Intell 48(7):1878–1890. https://doi.org/10.1007/s10489-017-1056-3

    Article  Google Scholar 

  28. Latkowski T, Osowski S (2017) Gene selection in autism – comparative study. Neurocomputing 250:37–44. https://doi.org/10.1016/j.neucom.2016.08.123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mahmoodian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudi, A., Mahmoodian, H. Stable gene selection by self-representation method in fuzzy sample classification. Med Biol Eng Comput 58, 1213–1223 (2020). https://doi.org/10.1007/s11517-020-02160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02160-6

Keywords

Navigation