Skip to main content
Log in

A new higher-order elastoplastic beam model for reinforced concrete

  • Computational Models for ‘Complex’ Materials and Structures, beyond the Finite Elements
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present paper introduces a new elastoplastic beam model for reinforced concrete based on a higher-order beam model previously developed (Int J Numer Methods Eng. https://doi.org/10.1002/nme.5926, 2018). Steel and concrete are both defined as elastoplastic materials. The beam model represents the concrete body whereas rebars are given a specific discretization. A Rankine criterion is used for concrete in both tension and compression, and a closed-form solution for the local projection of the trial stress on the yield surface is formulated. Steel rebars are modelled with 1D bar elements and added to the global stiffness of the concrete beam model. The kinematics of the higher-order beam model is enriched by a systematic method with displacement modes. This extension of the kinematics leads to local accuracy and yields results comparable to 3D computations. The present reinforced concrete model is validated through a set of case studies. Implemented within the software programs of the company Strains Engineering, the objective is to develop a fast computing and efficient model that can be directly used by engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Corre G, Lebée A, Sab K, Ferradi MK, Cespedes X (2018) The asymptotic expansion load decomposition elasto-plastic beam model. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5926

    Article  Google Scholar 

  2. Lubliner J, Oliver J, Oller S, Oñate E (1988) A plastic-damage model for concrete. Int J Solids Struct 25:299

    Article  Google Scholar 

  3. Govindjee S, Kay GJ, Simo JC (1995) Anisotropic modelling and numerical simulation of brittle damage in concrete. Int J Numer Methods Eng 38(21):3611. https://doi.org/10.1002/nme.1620382105

    Article  MATH  Google Scholar 

  4. Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25(5):729. https://doi.org/10.1016/0013-7944(86)90036-6

    Article  Google Scholar 

  5. Oller S, Barbat AH (2005) Moment-curvature damage model for bridges subjected to seismic loads. Comput Methods Appl Mech Eng 195(33–36):4490–4511

    MATH  ADS  Google Scholar 

  6. Chen W (2007) Plasticity in reinforced concrete. J. Ross Publishing Classics. J. Ross Publishing, Plantation. https://books.google.fr/books?id=FGp-U4hNjggC

  7. Feenstra PH, Borst RD (1996) A composite plasticity model for concrete. Int J Solids Struct 33(5):707. https://doi.org/10.1016/0020-7683(95)00060-N

    Article  MATH  Google Scholar 

  8. Grassl P, Lundgren K, Gylltoft K (2002) Concrete in compression: a plasticity theory with a novel hardening law. Int J Solids Struct 39(20):5205. https://doi.org/10.1016/S0020-7683(02)00408-0

    Article  MATH  Google Scholar 

  9. Salari MR, Saeb S, Willam KJ, Patchet SJ, Carrasco RC (2004) A coupled elastoplastic damage model for geomaterials. Comput Methods Appl Mech Eng 193(27):2625

    Article  ADS  Google Scholar 

  10. Grassl P, Jirásek M (2006) Damage-plastic model for concrete failure. Int J Solids Struct 43(22):7166. https://doi.org/10.1016/j.ijsolstr.2006.06.032

    Article  MATH  Google Scholar 

  11. Meschke G, Lackner R, Mang A (1998) An anisotropic elastoplastic-damage model for plain concrete. Int J Numer Methods Eng 42:703

    Article  Google Scholar 

  12. ACI (2014) Building code requirements for structural concrete and commentary. ISBN-10: 087031744X, ISBN-13: 978-0870317446

  13. Dallot J, Sab K, Forêt G (2009) Limit analysis of periodic beams. Eur J Mech A Solids 28(1):166. https://doi.org/10.1016/j.euromechsol.2008.04.001

    Article  MathSciNet  MATH  Google Scholar 

  14. de Buhan P, Sudret B (1999) A two-phase elastoplastic model for unidirectionally-reinforced materials. Eur J Mech A Solids 18(6):995. https://doi.org/10.1016/S0997-7538(99)00109-6

    Article  MATH  Google Scholar 

  15. Bleyer J, de Buhan P (2016) A numerical approach to the yield strength of shell structures. Eur J Mech A Solids 59:178. https://doi.org/10.1016/j.euromechsol.2016.03.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Epstein M (1979) Thin-walled beams as directed curves. Acta Mech 33(3):229. https://doi.org/10.1007/BF01175918

    Article  MathSciNet  MATH  Google Scholar 

  17. Rizzi N, Tatone A (1996) Nonstandard models for thin-walled beams with a view to applications. J Appl Mech 63(2):399. https://doi.org/10.1115/1.2788878

    Article  MATH  Google Scholar 

  18. Lofrano E, Paolone A, Ruta G (2013) A numerical approach for the stability analysis of open thin-walled beams. Mech Res Commun 48:76. https://doi.org/10.1016/j.mechrescom.2012.12.008

    Article  Google Scholar 

  19. Piana G, Lofrano E, Manuello A, Ruta G, Carpinteri A (2017) Compressive buckling for symmetric TWB with non-zero warping stiffness. Eng Struct 135:246. https://doi.org/10.1016/j.engstruct.2016.12.038

    Article  Google Scholar 

  20. Ibrahimbegović A, Frey F (1993) An efficient implementation of stress resultant plasticity in analysis of Reissner–Mindlin plates. Int J Numer Methods Eng 36(2):303. https://doi.org/10.1002/nme.1620360209

    Article  MATH  Google Scholar 

  21. Pham BH, Brancherie D, Davenne L, Ibrahimbegovic A (2012) Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates. Comput Mech 51(3):347–360

    Article  MathSciNet  Google Scholar 

  22. Bui NN, Ngo M, Nikolic M, Brancherie D, Ibrahimbegovic A (2014) Enriched Timoshenko beam finite element for modeling bending and shear failure of reinforced concrete frames. Comput Struct 143:9–18

    Article  Google Scholar 

  23. Owen DR, Hinton E (1980) Finite elements in plasticity, vol 271. Pineridge Press, Swansea

    MATH  Google Scholar 

  24. Spacone E, Filippou FC, Taucer FF (1996) Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation. Earthq Eng Struct Dyn 25:711

    Article  Google Scholar 

  25. Spacone E, Limkatanyu S (2000) Response of RC members including bond-slip effects. ACI Struct J 97(6):831–839

    Google Scholar 

  26. Moulin S (2010) Elément de poutre multifibre (droite), R3.08.08. Code\_Aster

  27. Mazars J, Kotronis P, Ragueneau F, Casaux G (2006) Using multifiber beams to account for shear and torsion. Applications to concrete structural elements. Comput Mech Appl Mech Eng 195:7264

    Article  Google Scholar 

  28. Jukić M, Boštjan B, Ibrahimbegovic A (2014) Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity. Eng Struct 75:507–527

    Article  Google Scholar 

  29. Marini A, Spacone E (2006) Analysis of reinforced concrete elements including shear effects. ACI Struct J 103:645

    Google Scholar 

  30. Bitar I, Kotronis P, Benkemoun N, Grange S (2018) A generalized Timoshenko beam with embedded rotation discontinuity. Finite Elem Anal Des 150(April):34. https://doi.org/10.1016/j.finel.2018.07.002

    Article  MathSciNet  Google Scholar 

  31. Bitar I, Grange S, Kotronis P, Benkemoun N (2018) A comparison of displacement-based Timoshenko multi-fiber beams finite element formulations and elasto-plastic applications. Eur J Environ Civ Eng 22(4):464. https://doi.org/10.1080/19648189.2016.1210031

    Article  Google Scholar 

  32. Navarro Gregori J, Miguel Sosa P, Fernández Prada MA, Filippou FC (2007) A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading. Eng Struct 29(12):3404. https://doi.org/10.1016/j.engstruct.2007.09.001

    Article  Google Scholar 

  33. Di Re P, Addessi D, Filippou FC (2018) Mixed 3D beam element with damage plasticity for the analysis of RC members under warping torsion. J Struct Eng 144(6):04018064. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002039

    Article  Google Scholar 

  34. Capdevielle S, Grange S, Dufour F, Desprez C (2016) A multifiber beam model coupling torsional warping and damage for reinforced concrete structures. Eur J Environ Civ Eng 20(8):914. https://doi.org/10.1080/19648189.2015.1084384

    Article  Google Scholar 

  35. Bairan Garcia JM, Mari Bernat AR (2007) Multiaxial-coupled analysis of RC cross-sections subjected to combined forces. Eng Struct 29(8):1722. https://doi.org/10.1016/j.engstruct.2006.09.007

    Article  Google Scholar 

  36. Bairan Garcia JM, Mari Bernat AR (2007) Shear-bending-torsion interaction in structural concrete members: a nonlinear coupled sectional approach. Arch Comput Methods Eng 14(3):249. https://doi.org/10.1007/s11831-007-9007-5

    Article  MATH  Google Scholar 

  37. Mohr S, Bairan Garcia JM, Mari Bernat AR (2010) A frame element model for the analysis of reinforced concrete structures under shear and bending. Eng Struct 32(12):3936. https://doi.org/10.1016/j.engstruct.2010.09.005

    Article  Google Scholar 

  38. Ferradi MK, Lebée A, Fliscounakis A, Cespedes X, Sab K (2016) A model reduction technique for beam analysis with the asymptotic expansion method. Comput Struct 172:11. https://doi.org/10.1016/j.compstruc.2016.05.013

    Article  Google Scholar 

  39. Corre G, Lebée A, Sab K, Ferradi MK, Cespedes X (2018) Higher-order beam model with eigenstrains: theory and illustrations. ZAMM J Appl Math Mech Z Angew Math Mech. https://doi.org/10.1002/zamm.201700180

    Article  Google Scholar 

  40. Kupfer H, Hilsdorf HK, Rusch H (1969) Behavior of concrete under biaxial stresses. ACI J Proc 66:656

    Google Scholar 

  41. Simo J (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49(1):55. https://doi.org/10.1016/0045-7825(85)90050-7

    Article  MATH  ADS  Google Scholar 

  42. Godio M, Stefanou I, Sab K, Sulem J (2016) Multisurface plasticity for Cossear materials: plate element implementation and validation. Int J Numer Methods Eng 108(5):456–484

    Article  Google Scholar 

  43. Simo J, Hughes T (1998) Computational inelasticity. Interdisciplinary applied mathematics. Springer, New York

    MATH  Google Scholar 

  44. Silhavy M (2013) The mechanics and thermodynamics of continuous media. Theoretical and mathematical physics. Springer, Berlin

    MATH  Google Scholar 

  45. De Soza T (2015) Eléments MEMBRANE et GRILLE\_MEMBRANE, R3.08.07. Code\_Aster

  46. Radfar S, Foret G, Sab K (2012) Modélisation du comportement à rupture (peeling-off) de poutres BA renforcées soumises à un essai de flexion 4 points. Revue des composites et des matériaux avancés 22(2):171–185. https://doi.org/10.3166/rcma.22.171-185

    Article  Google Scholar 

  47. Comité Euro International du Béton (1993) CEB-FIP model code 90. CEB Bulletins. ISBN: 978-0-7277-1696-5. https://www.fib-international.org/publications/ceb-bulletins/ceb-fip-model-code-90-pdf-detail.html

  48. Flejou J (2011) Réponse statique d’une poutre béton armé (section en T) à comportement linéaire, V3.01.111. Code\_Aster

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corre, G., Lebée, A., Sab, K. et al. A new higher-order elastoplastic beam model for reinforced concrete. Meccanica 55, 791–813 (2020). https://doi.org/10.1007/s11012-019-01003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01003-5

Keywords

Navigation