Skip to main content
Log in

Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses

  • Regular Paper – Taxonomy/Phylogenetics/Evolutionary Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Revealing cryptic diversity is of great importance for effective conservation and understanding macroevolution and ecology of plants. Ottelia, a typical example of aquatic plants, possesses extremely variable morphology and the presence of cryptic diversity makes its classification problematic. Previous studies have revealed cryptic Ottelia species in Asia, but very little is known about the molecular systematics of this genus in Africa, a center of species diversity of Ottelia. In this study, we sampled Ottelia ulvifolia, an endemic species of tropical Africa, from Zambia and Cameroon. We used six chloroplast DNA regions, nrITS and six polymorphic microsatellite markers to estimate the molecular diversity and population genetic structure in O. ulvifolia. The phylogenetic inference, STACEY and STRUCTURE analyses supported at least three clusters within O. ulvifolia, each representing unique flower types (i.e., bisexual yellow flower, unisexual yellow flower and bisexual white flower types). Although abundant genetic variation (> 50%) was observed within the populations, excessive anthropogenic activities may result in genetic drift and bottlenecks. Here, three cryptic species of O. ulvifolia complex are defined, and insights are provided into the taxonomy of Ottelia using the phylogenetic species concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett SCH, Eckert CG, Husband BC (1993) Evolutionary processes in aquatic plant populations. Aquat Bot 44:105–145

    Article  Google Scholar 

  • Beebee T, Rowe G (2000) Microsatellite analysis of natterjack toad Bufo calamita Laurenti populations: consequences of dispersal from a Pleistocene refugium. Biol J Linnean Soc 69:367–381

    Article  Google Scholar 

  • Bouckaert RR, Heled J, Kühnert D, Vaughan TG, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  Google Scholar 

  • Chen LY, Chen JM, Gituru RW, Wang QF (2012) Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12:30

    Article  CAS  Google Scholar 

  • Chen JM, Du ZY, Long ZC, Gichira AW, Wang QF (2017) Molecular divergence among varieties of Ottelia acuminata (Hydrocharitaceae) in the Yunnan-Guizhou Plateau. Aquat Bot 140:62–68

    Article  CAS  Google Scholar 

  • Cook CDK, Urmi-König K (1984) A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of Eurasia, Australasia and America. Aquat Bot 20:131–177

    Article  Google Scholar 

  • Cook CDK, Symoens JJ, Urmi-Konig K (1984) A revision of the genus Ottelia (Hydrocharitaceae). 1.Generic considerations. Aquat Bot 18:263–274

    Article  Google Scholar 

  • Dandy JE (1934) Notes on Hydrocharitaceae. 1. The delimitation and subdivision of Ottelia. J Bot (London) 72:132–137

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  Google Scholar 

  • Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831

    Article  CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Fan XR, Njeri HK, Li W, Chen YY (2019) Abundant historical gene flow within and among river systems for populations of Ottelia acuminata var. jingxiensis, an endangered macrophyte from southwest China. Aquat Bot 157:1–9

    Article  Google Scholar 

  • Guo JL, Yu YH, Zhang JW, Li ZM, Zhang YH, Volis S (2019) Conservation strategy for aquatic plants: endangered Ottelia acuminata (Hydrocharitaceae) as a case study. Biodivers Conserv 28:1533–1548

    Article  Google Scholar 

  • He JB (1991) Systematic botanical and biosystematic studies on Ottelia in China. Wuhan University Press, Wuhan

    Google Scholar 

  • Ito Y, Tanaka N, Barfod AS, Bogner J, Li J, Yano O, Gale SW (2019) Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J Plant Res 132:335–344

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  Google Scholar 

  • Jones GL (2017) Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Math Biol 74:447–467

    Article  Google Scholar 

  • Jones GL, Aydin Z, Oxelman B (2015) DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31:991–998

    Article  CAS  Google Scholar 

  • Li ZZ, Liao K, Zou CY, Liu Y, Hu GW, Wang QF, Chen JM (2018) Ottelia guanyangensis (Hydrocharitaceae), a new species from southwestern China. Phytotaxa 361:294

    Article  Google Scholar 

  • Li ZZ, Lu MX, Gichira AW, Islam MR, Wang QF, Chen JM (2019) Genetic diversity and population structure of Ottelia acuminata var. jingxiensis, an endangered endemic aquatic plant from southwest China. Aquat Bot 152:20–26

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175:623–639

    Article  Google Scholar 

  • Nguyen LT, Schmidt HA, Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabosky DL, Adams DC (2012) Rates of morphological evolution are correlated with species richness in salamanders. Evolution 66:1807–1818

    Article  Google Scholar 

  • Rambaut A (2009) FigTree ver. 1.3.1: Tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 17 Oct 2016

  • Rambaut A, Suchard MA, Xie W, Drummond AJ (2014) Tracer. ver. 1.6. http://beast.bio.ed.ac.uk/Tracer/. Accessed 17 Dec 2016

  • Reidenbach KR, Neafsey DE, Costantini C, Sagnon N, Simard F, Ragland GJ, Egan SP, Feder JL, Muskavitch MAT, Besansky NJ (2012) Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biol Evol 4:1202–1212

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:53–542

    Google Scholar 

  • Rosenberg NE (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470

    Article  Google Scholar 

  • Smith DR (2015) Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol 7:1227–1234

    Article  CAS  Google Scholar 

  • Symoens JJ (2009) Hydrocharitaceae. Flora Zambesiaca 12:31–32

    Google Scholar 

  • Wang B, Song ZP, Liu GH, Lu F, Li W (2010) Comparison of the extent of genetic variation of Vallisneria natans and its sympatric congener V. spinulosa in lakes of the middle-lower reaches of the Yangtze River. Aquat Bot 92:233–238

    Article  CAS  Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants II. Kluwer Academic Publishing, Boston, pp 265–296

    Chapter  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  Google Scholar 

  • Yan SZ (1982) Two new species of Hydrocharitaceae. J Jinan Univ 2:161–163

    Google Scholar 

  • Zhai SH, Yin GS, Yang XH (2018) Population genetics of the endangered and wild edible plant Ottelia acuminata in Southwestern China using novel SSR markers. Biochem Genet 56:235–254

    Article  CAS  Google Scholar 

  • Zhang HL, Sun JL, Wang MX, Liao DQ, Zeng YW, Shen SQ, Yu P, Mu P, Wang XK, Li ZC (2007) Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR. Genome 50:72–83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tacham Walter Ndam and Eric Ngasop for their immense assistance and valuable information for our fieldwork in Cameroon; the Department of National Parks and Wildlife-Zambia for support and involvement in fieldwork in Zambia. This Research was conducted under Permit No. 0000072 /MINRESI /B00 /C00/C10/C12 in Cameroon and Permit No. DNPW/8/27/1 from the department of National Parks and Wildlife, Zambia. This study was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB31000000) and the Sino Africa Joint Research Center (Nos. Y323771W07 and SAJC201322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary material 1 (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZZ., Ngarega, B.K., Lehtonen, S. et al. Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. J Plant Res 133, 373–381 (2020). https://doi.org/10.1007/s10265-020-01175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01175-2

Keywords

Navigation